Question

Alan tosses a coin 20 times. Bob pays Alan $1 if the first toss falls heads,...

Alan tosses a coin 20 times. Bob pays Alan $1 if the first toss falls heads, $2 if the first toss falls tails and the second heads, $4 if the first two tosses both fall tails and the third heads, $8 if the first three tosses fall tails and the fourth heads, etc. If the game is to be fair, how much should Alan pay Bob for the right to play the game?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose you toss a fair coin three times. Which of the following events are independent? Give...
Suppose you toss a fair coin three times. Which of the following events are independent? Give mathematical justification for your answer.     A= {“heads on first toss”}; B= {“an odd number of heads”}. A= {“no tails in the first two tosses”}; B=     {“no heads in the second and third toss”}.
Alice and Bob play the following game. They toss 5 fair coins. If all tosses are...
Alice and Bob play the following game. They toss 5 fair coins. If all tosses are Heads,Bob wins. If the number of Heads tosses is zero or one, Alice wins. Otherwise they repeat,tossing five coins on each round, until the game is decided. (a) Compute the expectednumber of coin tosses needed to decide the game. (b) Compute the probability that Alicewins.
I toss a coin two times. X1 is the number of heads on the first toss....
I toss a coin two times. X1 is the number of heads on the first toss. X2 is the number of heads on the second toss. Find the mean of X1. Find the variance of X1. Find the mean of X1 + X2. (This is the number of heads in 2 tosses.) Find the variance of X1 + X2. If you tossed 10 coins, how many heads would you expect? What is the variance of the number of heads?
Suppose you toss a coin 100 times. Should you expect to get exactly 50 heads? Why...
Suppose you toss a coin 100 times. Should you expect to get exactly 50 heads? Why or why not? A. Yes, because the number of tosses is even, so if the coin is fair, half of the results should be heads. B. No, because the chance of heads or tails is the same, the chance of any number of heads is the same. C. No, there will be small deviations by chance, but if the coin is fair, the result...
(a) A fair coin is tossed five times. Let E be the event that an odd...
(a) A fair coin is tossed five times. Let E be the event that an odd number of tails occurs, and let F be the event that the first toss is tails. Are E and F independent? (b) A fair coin is tossed twice. Let E be the event that the first toss is heads, let F be the event that the second toss is tails, and let G be the event that the tosses result in exactly one heads...
Suppose we toss a fair coin three times. Consider the events A: we toss three heads,...
Suppose we toss a fair coin three times. Consider the events A: we toss three heads, B: we toss at least one head, and C: we toss at least two tails. P(A) = 12.5 P(B) = .875 P(C) = .50 What is P(A ∩ B), P(A ∩ C) and P(B ∩ C)? If you can show steps, that'd be great. I'm not fully sure what the difference between ∩ and ∪ is (sorry I can't make the ∪ bigger).
Given 2 choices: 1. A fair coin toss game of heads: $200 or tails: $0. 2....
Given 2 choices: 1. A fair coin toss game of heads: $200 or tails: $0. 2. Being handed $100 cash A risk neutral individual will : prefer choice 1 prefer choice 2 will be indifferent between both choices none of the above
a player pays $2 to toss a coin 3 times. He gets $1 if the number...
a player pays $2 to toss a coin 3 times. He gets $1 if the number of tails is 2, and he gets $6 if the number of tails is 3, but nothing otherwise. Let X be his reward based on the number of tails. 1)What is the expected value of X? 2)What is his expected profit per game? 3)what is Var(X)?
Toss a fair coin for three times and let X be the number of heads. (a)...
Toss a fair coin for three times and let X be the number of heads. (a) (4 points) Write down the pmf of X. (hint: first list all the possible values that X can take, then calculate the probability for X taking each value.) (b) (4 points) Write down the cdf of X. (c) (2 points) What is the probability that at least 2 heads show up?
Consider a game in which a coin will be flipped three times. For each heads you...
Consider a game in which a coin will be flipped three times. For each heads you will be paid $100. Assume that the coin comes up heads with probability ⅔. a. Construct a table of the possibilities and probabilities in this game. The table below gives you a hint on how to do this and shows you that there are now eight possible outcomes. (3 points) b. Compute the expected value of the game. (2 points) c. How much would...