Question

Given 2 choices: 1. A fair coin toss game of heads: $200 or tails: $0. 2....

Given 2 choices:

1. A fair coin toss game of heads: $200 or tails: $0.

2. Being handed $100 cash

A risk neutral individual will :

prefer choice 1
prefer choice 2
will be indifferent between both choices
none of the above

Homework Answers

Answer #1

The correct answer is - Will Be Indifferent Between Both Choices

Explanation -

A risk taking individual will prefer a fair coin toss game. A risk averse individual will prefer being handed $100 cash.

Expected winning on toss of coin = Probability of heads * Winning = 0.5 * 200 = $100

Since the expected winning on toss of coin is equal to the amount if cash is chosen, a risk neutral investor will be indifferent between the two choices. The worst case scenario is that the individual gets $100 and the best case scenario is that the individual wins $200.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Alan tosses a coin 20 times. Bob pays Alan $1 if the first toss falls heads,...
Alan tosses a coin 20 times. Bob pays Alan $1 if the first toss falls heads, $2 if the first toss falls tails and the second heads, $4 if the first two tosses both fall tails and the third heads, $8 if the first three tosses fall tails and the fourth heads, etc. If the game is to be fair, how much should Alan pay Bob for the right to play the game?
19.4 ( A simulation) To simulate the toss of a fair coin (the probability of heads...
19.4 ( A simulation) To simulate the toss of a fair coin (the probability of heads and tails are both 0.5) using a table of random digits. (a) assign the digits 0,1,2,3, and 4 to represent heads and the digits 5,6,7,8,9 to represent tails. (b) assign the digists 0,2,4,6, and 8 to represent heads and the digits 1,3,5,7, and 9 to represent tails. (c) assign the digits 0,1,5,8, and 9 to represent heads and the digits 2,3,4,6, and 7 to...
Anne has been given a choice between two lotteries. In lottery A a fair coin is...
Anne has been given a choice between two lotteries. In lottery A a fair coin is flipped. If it comes up heads, Anne wins $50, if it comes up tails, she wins $150. In lottery B a fair coin is also flipped. If it comes up heads, Anne wins nothing, if it comes up tails, she wins $200. Evaluate the statements, a) If Anne is risk loving, she prefers lottery A to lottery B (True, False). Explain. b)If Anne is...
You play a coin flip game where you win NOTHING if the coin comes up heads...
You play a coin flip game where you win NOTHING if the coin comes up heads or win $1,000 if the coin comes up tails. Assume a fair coin is used. Which of the following is TRUE? Group of answer choices a. A risk-seeking person would be willing to accept a cash payment of $500 to forgo (i.e. pass up) playing the game. b. A risk neutral person might accept a cash payment of $400 to forgo (i.e. pass up)...
Q3. Suppose you toss n “fair” coins (i.e., heads probability = 1/21/2). For every coin that...
Q3. Suppose you toss n “fair” coins (i.e., heads probability = 1/21/2). For every coin that came up tails, suppose you toss it one more time. Let X be the random variable denoting the number of heads in the end. What is the range of the variable X (give exact upper and lower bounds) What is the distribution of X? (Write down the name and give a convincing explanation.)
A game consists of flipping a fair coin twice and counting the number of heads that...
A game consists of flipping a fair coin twice and counting the number of heads that appear. The distribution for the number of heads, X, is given by: P(X = 0) = 1/4; P(X =1) = 1/2; P(X = 2) = 1/4. A player receives $0 for no heads, $2 for 1 head, and $5 for 2 heads (there is no cost to play the game). Calculate the expected amount of winnings ($).
Deriving fair coin flips from biased coins: From coins with uneven heads/tails probabilities construct an experiment...
Deriving fair coin flips from biased coins: From coins with uneven heads/tails probabilities construct an experiment for which there are two disjoint events, with equal probabilities, that we call "heads" and "tails". a. given c1 and c2, where c1 lands heads up with probability 2/3 and c2 lands heads up with probability 1/4, construct a "fair coin flip" experiment. b. given one coin with unknown probability p of landing heads up, where 0 < p < 1, construct a "fair...
An unfair coin is such that on any given toss, the probability of getting heads is...
An unfair coin is such that on any given toss, the probability of getting heads is 0.6 and the probability of getting tails is 0.4. The coin is tossed 8 times. Let the random variable X be the number of times heads is tossed. 1. Find P(X=5). 2. Find P(X≥3). 3. What is the expected value for this random variable? E(X) = 4. What is the standard deviation for this random variable? (Give your answer to 3 decimal places) SD(X)...
Suppose we toss a fair coin n = 1 million times and write down the outcomes:...
Suppose we toss a fair coin n = 1 million times and write down the outcomes: it gives a Heads-and-Tails-sequence of length n. Then we call an integer i unique, if the i, i + 1, i + 2, i + 3, . . . , i + 18th elements of the sequence are all Heads. That is, we have a block of 19 consecutive Heads starting with the ith element of the sequence. Let Y denote the number of...
Think about the following game: A fair coin is tossed 10 times. Each time the toss...
Think about the following game: A fair coin is tossed 10 times. Each time the toss results in heads, you receive $10; for tails, you get nothing. What is the maximum amount you would pay to play the game? Define a success as a toss that lands on heads. Then the probability of a success is 0.5, and the expected number of successes after 10 tosses is 10(0.5) = 5. Since each success pays $10, the total amount you would...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT