Question

The mean SAT score in mathematics, μ , is 574 . The standard deviation of these...

The mean SAT score in mathematics, μ , is 574 . The standard deviation of these scores is 39 . A special preparation course claims that its graduates will score higher, on average, than the mean score 574 . A random sample of 14 students completed the course, and their mean SAT score in mathematics was 602 . Assume that the population is normally distributed. At the 0.01 level of significance, can we conclude that the preparation course does what it claims? Assume that the standard deviation of the scores of course graduates is also 39 . Perform a one-tailed test. Then fill in the table below. Carry your intermediate computations to at least three decimal places, and round your responses as specified in the table. (If necessary, consult a list of formulas.)

Homework Answers

Answer #1

H0: Null Hypothesis: 574

HA: Alternative Hypothesis: 574 (Claim)
SE = s/

= 39/

= 10.4232

Test statistic is given by:

t = (602 - 574)/10.4232

= 2.6863

= 0.01

ndf = n - 1= 14 -1= 13

from Table, critical value of t = 2.6503

Since the calculated value of t = 2.6863 is greater than critical value of t = 2.6503, the difference is significant. Reject null hypothesis.

Conclusion:

The data support the claim that the prepation course does what it claims that its graduates will score higher on average than the mean score 574.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The mean SAT score in mathematics, μ, is 521. The standard deviation of these scores is...
The mean SAT score in mathematics, μ, is 521. The standard deviation of these scores is 36. A special preparation course claims that its graduates will score higher, on average, than the mean score 521. A random sample of 15 students completed the course, and their mean SAT score in mathematics was 530. Assume that the population is normally distributed. At the 0.1 level of significance, can we conclude that the preparation course does what it claims? Assume that the...
The mean SAT score in mathematics, μ, is 513. The standard deviation of these scores is...
The mean SAT score in mathematics, μ, is 513. The standard deviation of these scores is 48. A special preparation course claims that its graduates will score higher, on average, than the mean score 513. A random sample of 150 students completed the course, and their mean SAT score in mathematics was 519. At the 0.01 level of significance, can we conclude that the preparation course does what it claims? Assume that the standard deviation of the scores of course...
Math SAT: Suppose the national mean SAT score in mathematics was 515. In a random sample...
Math SAT: Suppose the national mean SAT score in mathematics was 515. In a random sample of 40 graduates from Stevens High, the mean SAT score in math was 508, with a standard deviation of 35. Test the claim that the mean SAT score for Stevens High graduates is the same as the national average. Test this claim at the 0.10 significance level. (a) What type of test is this? This is a left-tailed test.This is a two-tailed test.     This is...
Math SAT: Suppose the national mean SAT score in mathematics was 505. In a random sample...
Math SAT: Suppose the national mean SAT score in mathematics was 505. In a random sample of 40 graduates from Stevens High, the mean SAT score in math was 495, with a standard deviation of 30. Test the claim that the mean SAT score for Stevens High graduates is the same as the national average. Test this claim at the 0.01 significance level. (a) What type of test is this? This is a left-tailed test. This is a right-tailed test.    ...
Math SAT: Suppose the national mean SAT score in mathematics was 505. In a random sample...
Math SAT: Suppose the national mean SAT score in mathematics was 505. In a random sample of 60 graduates from Stevens High, the mean SAT score in math was 510, with a standard deviation of 30. Test the claim that the mean SAT score for Stevens High graduates is the same as the national average. Test this claim at the 0.10 significance level. (a) What type of test is this? This is a left-tailed test.This is a two-tailed test.     This is...
Math SAT: Suppose the national mean SAT score in mathematics was 505. In a random sample...
Math SAT: Suppose the national mean SAT score in mathematics was 505. In a random sample of 50 graduates from Stevens High, the mean SAT score in math was 495, with a standard deviation of 30. Test the claim that the mean SAT score for Stevens High graduates is the same as the national average. Test this claim at the 0.05 significance level. (a) What type of test is this? This is a two-tailed test. This is a left-tailed test.    ...
Suppose the national mean SAT score in mathematics was 515. In a random sample of 40...
Suppose the national mean SAT score in mathematics was 515. In a random sample of 40 graduates from Stevens High, the mean SAT score in math was 507, with a standard deviation of 30. Test the claim that the mean SAT score for Stevens High graduates is the same as the national average. Test this claim at the 0.05 significance level. (a) What type of test is this? This is a left-tailed test. This is a right-tailed test.     This is...
Suppose the national mean SAT score in mathematics was 510. In a random sample of 40...
Suppose the national mean SAT score in mathematics was 510. In a random sample of 40 graduates from Stevens High, the mean SAT score in math was 501, with a standard deviation of 40. Test the claim that the mean SAT score for Stevens High graduates is the same as the national average. Test this claim at the 0.10 significance level. (a) What type of test is this? This is a two-tailed test. This is a right-tailed test. This is...
7.    (10 pts.) The national mean score for the SAT is 910. An SAT preparation...
7.    (10 pts.) The national mean score for the SAT is 910. An SAT preparation program claims that, on average, its graduates score higher than the national average of 910. To test the program’s claim, 36 students who have applied to take the SAT are selected randomly for inclusion in the prep course. anwsers must be in 4 decimal places a.   What are the hypotheses for the test?                           b.   Let X be the...
A laboratory claims that the mean sodium level, μ , of a healthy adult is 141...
A laboratory claims that the mean sodium level, μ , of a healthy adult is 141 mEq per liter of blood. To test this claim, a random sample of 26 adult patients is evaluated. The mean sodium level for the sample is 144 mEq per liter of blood. It is known that the population standard deviation of adult sodium levels is 11 mEq. Assume that the population is normally distributed. Can we conclude, at the 0.05 level of significance, that...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT