A mortar* crew is positioned near the top of a steep hill. Enemy forces are charging up the hill and it is necessary for the crew to spring into action. Angling the mortar at an angle of θ = 54.0o (as shown), the crew fires the shell at a muzzle velocity of 204 feet per second. How far down the hill does the shell strike if the hill subtends an angle φ = 33.0o from the horizontal? (Ignore air friction.)
How long will the mortar shell remain in the air?
How fast will the shell be traveling when it hits the ground?
along horizantal displacement = x = d*cosphi = d*cos33
initial speed = vox = vo*costheta
x = vox*T
T = x/vox = (d*cosphi)/(vo*costheta)
along vertical
displacement y = -d*sinphi
initial velocity = voy = vo*sintheta
y = voy *T + 0.5*ay*T^2
-d*sinphi = (vo*sintheta*d*cosphi)/(vo*costheta) - 0.5*g*d^2*(cosphi)^2/(vo^2*(costheta)^2)
-d*sinphi = (tantheta*d*cosphi)) -
0.5*g*d^2*(cosphi)^2/(vo^2*(costheta)^2)
-d*sin33 =
(d*sin33*tan54)-(0.5*32*d^2*(cos33)^2)/(204^2*(cos54)^2))
d = 1653.6 feet
+++++++++++++++
T = (d*cos33)/(vo*cos54)
T = (1653.6*cos33)/(204*cos54)
T = 11.56 s
++++++++++++
v = voxi + voyi +ay*T
ay = -32 j
v = (204*cos54)i + (204*sin54)j - 32*11.56 j
v = 120i + 165j - 369.92j
v = 120i - 204.92 j
v = sqrt(120^2+204.92^2) = 237.5 feet/s
Get Answers For Free
Most questions answered within 1 hours.