Question

A 50.0 gram mass connected to a spring with a spring constant of 35 N m...

A 50.0 gram mass connected to a spring with a spring constant of 35 N m oscillates on a horizontal, frictionless surface with an amplitude of 4.00 cm. (i) What is the total mechanical energy of the system? (ii) What is the speed of the mass when the displacement is 1.00 cm? (iii) What is the potential energy when the displacement is 3.00 cm? (iv) What is the kinetic energy when the displacement is 3.00 cm?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 35.0-g object connected to a spring with a force constant of 45.0 N/m oscillates with...
A 35.0-g object connected to a spring with a force constant of 45.0 N/m oscillates with an amplitude of 5.00 cm on a frictionless, horizontal surface. (a) Find the total energy of the system. mJ (b) Find the speed of the object when its position is 1.30 cm. (Let 0 cm be the position of equilibrium.) m/s (c) Find the kinetic energy when its position is 3.00 cm. mJ (d) Find the potential energy when its position is 3.00 cm....
A 70.0-g object connected to a spring with a force constant of 30.0 N/m oscillates with...
A 70.0-g object connected to a spring with a force constant of 30.0 N/m oscillates with an amplitude of 8.00 cm on a frictionless, horizontal surface. (a) Find the total energy of the system. Answer- mJ (b) Find the speed of the object when its position is 1.30 cm. (Let 0 cm be the position of equilibrium.) Answer- m/s (c) Find the kinetic energy when its position is 3.00 cm. Answer- mJ (d) Find the potential energy when its position...
A 70.0 g object connected to a spring with a force constant of 25.0 N/m oscillates...
A 70.0 g object connected to a spring with a force constant of 25.0 N/m oscillates on a horizontal, frictionless surface with an amplitude of 6.00 cm. (a) Find the total energy of the system. mj (b) Find the speed of the object when the position is 1.05 cm. m/s (c) Find the kinetic energy when the position is 3.50 cm. mJ (d) Find the potential energy when the position is 3.50 cm.
A 50.0-g object connected to a spring with a force constant of 100.0 N/m oscillates on...
A 50.0-g object connected to a spring with a force constant of 100.0 N/m oscillates on a horizontal frictionless surface with an amplitude of 8.00 cm. a) What is the period (in seconds) and frequency of its motion? b) Assuming that the object's equilibrium position (i.e. when the spring is unstretched) is designated as x = 0, and that at t = 0 the object is located at maximum amplitude, x(t) = A cos (ωt), describes the motion. What is...
(15 pts) A 0.50 kg object connected to a spring with a spring constant of 350...
(15 pts) A 0.50 kg object connected to a spring with a spring constant of 350 N/m oscillates on a horizontal, frictionless surface with an amplitude of 4.00 cm. a) What is the angular frequency of the oscillation? b) What is the maximum speed of the object? c) At what position does this maximum speed occur? d) What is the acceleration of the object at x = 2.00 cm? e) What is the total energy of the mass-spring system?
A mass of 60.0 g, attached to a weightless spring with a force constant of 40.0...
A mass of 60.0 g, attached to a weightless spring with a force constant of 40.0 N / m, vibrates at an amplitude of 5.00 cm on a horizontal, frictionless plane. (a) The total energy of the vibrating system, (b) the velocity of the mass when the displacement is 2.00 cm. Find. When the displacement is 2.50 cm, (c) kinetic energy and (d) potential energy Find.
A 0.43 kg object connected to a light spring with a spring constant of 18.4 N/m...
A 0.43 kg object connected to a light spring with a spring constant of 18.4 N/m oscillates on a frictionless horizontal surface. The spring is compressed 4.0 cm and released from rest. (a) Determine the maximum speed of the mass. cm/s (b) Determine the speed of the mass when the spring is compressed 1.5 cm. cm/s (c) Determine the speed of the mass when the spring is stretched 1.5 cm. cm/s (d) For what value of x does the speed...
A massless spring of spring constant k = 4872 N/m is connected to a mass m...
A massless spring of spring constant k = 4872 N/m is connected to a mass m = 210 kg at rest on a horizontal, frictionless surface. Part (a) The mass is displaced from equilibrium by A = 0.73 m along the spring’s axis. How much potential energy, in joules, is stored in the spring as a result? Part (b) When the mass is released from rest at the displacement A= 0.73 m, how much time, in seconds, is required for...
A 0.400-kg object attached to a spring with a force constant of 8.00 N/m vibrates in...
A 0.400-kg object attached to a spring with a force constant of 8.00 N/m vibrates in simple harmonic motion with an amplitude of 12.2 cm. the maximum value of its speed is 54.6 WHAT IS THE MAXIMUM VALUE OF IT'S ACCELERATION? QUESTION 2 A 45.0-g object connected to a spring with a force constant of 40.0 N/m oscillates with an amplitude of 7.00 cm on a frictionless, horizontal surface. the total energy of the system is 98 the speed of...
A 2.1 kg mass is connected to a spring (k=175 N/m) and is sliding on a...
A 2.1 kg mass is connected to a spring (k=175 N/m) and is sliding on a horizontal frictionless surface. The mass is given an initial displacement of +14 cm and released with an initial velocity of -19 cm/s. Determine the acceleration of the spring at t=1.2 seconds. (include units with answer)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT