Question

A 7.34 µF capacitor and a 7.38 mH inductor are connected in
series with an AC power source that has a frequency of 3.78
x10^{3} Hz and a peak voltage of 76 V. Take the initial
time t as zero when the instantaneous voltage equals zero.

Determine the instantaneous current when t = 5.68x
10^{-4} s.

Answer #1

A resistor, 50.0-mH inductor, and 100.0-µF capacitor are
connected in series with a 50 Hz voltage source and an impedance of
75.0 Ώ. What average power is delivered to this circuit when delta
Vrms = 210 V

A 23-Ω resistor, 58-μF capacitor, and 3.5-mH inductor are
connected in series with an AC source of amplitude 12 V and
frequency 120 Hz.
Part (h) With a source voltage of
Vsource = V0
cos(2πft), what is the instantaneous voltage, in volts,
across the capacitor at time t = 2.25 s?
Part (i) What is the amplitude of the voltage
drop across the inductor, in volts?
Part (j) With a source voltage of
Vsource =
V0cos(2πft), what is the instantaneous...

A resistor, 50.0-mH inductor, and 100.0-µF capacitor
are connected in series with a 50 Hz voltage source and an
impedance of 75.0 Ώ. What average power is delivered to this
circuit when ΔVrms = 210 V?
please explain step by step.

A 0.380 H inductor, a 20 µf capacitor, and a 25Ω resistor are
connected in series to an ac generator with an rms voltage of 30.0
V and a frequency of 50.0 Hz. Find the rms current and the peak
current in the circuit.

A series RCL circuit contains only a capacitor (C = 12.2 μF), an
inductor (L = 5.28 mH), and a generator (peak voltage = 68.5 V,
frequency = 5.60 x 103 Hz). When t = 0 s, the instantaneous value
of the voltage is zero, and it rises to a maximum one-quarter of a
period later. (a) Find the instantaneous value of the voltage
across the capacitor/inductor combination when t = 7.20 x 10-4 s.
(b) What is the instantaneous...

A 11.0-Ω resistor, 6.00-mH inductor, and 70.0-µF capacitor are
connected in series to a 55.0-V (rms) source having variable
frequency. If the operating frequency is twice the resonance
frequency, find the energy delivered to the circuit during one
period.

A 10.5-Ω resistor, 6.50-mH inductor, and 130-µF capacitor are
connected in series to a 55.0-V (rms) source having variable
frequency. If the operating frequency is twice the resonance
frequency, find the energy delivered to the circuit during one
period.

A 10.5-Ω resistor, 6.50-mH inductor, and 130-µF capacitor are
connected in series to a 55.0-V (rms) source having variable
frequency. If the operating frequency is twice the resonance
frequency, find the energy delivered to the circuit during one
period.
Answer in mJ

A series AC circuit contains a resistor, an inductor of 210 mH,
a capacitor of 5.50 µF, and a source with ΔVmax = 240 V operating
at 50.0 Hz. The maximum current in the circuit is 200 mA. (a)
Calculate the inductive reactance. Ω (b) Calculate the capacitive
reactance. Ω (c) Calculate the impedance. kΩ (d) Calculate the
resistance in the circuit. kΩ (e) Calculate the phase angle between
the current and the source voltage. °

In RLC series circuit, an AC source with a rms voltage of 220 V
and frequency 60 Hz is connected to a resistor, a capacitor 65 µF
and an inductor of inductance 185 mH. If the observed current is
4.4 A, evaluate the resistance of the resistor.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 23 minutes ago

asked 25 minutes ago

asked 39 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago