Question

An inventor is designing an engine that has a cycle with maximum temperature of 572 K...

An inventor is designing an engine that has a cycle with maximum temperature of 572 K that exhausts heat to an open container of ice and water. What is the minimum amount of exhaust heat that will be produced for each Joule of heat supplied?

Homework Answers

Answer #1

We know that, For any engine, the maximum efficiency will be if engine operate on Carnot cyccle. In other words for minimum exhaut of heat for each joule of heat supply at source, engine Must Carnot engine.

Maximum temperature During cycle = 572 K , means Heat source temperature = 572 K

in Open container of Ice and water, Temperature will be

so heat sink temperature = 273 K

For Carnot engine efficiency is given by

Let heat supply = 1 J

From the above equation

Per Joule of heat supply.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An inventor proposes a four-stroke cycle running on helium. The engine has a compression ratio of...
An inventor proposes a four-stroke cycle running on helium. The engine has a compression ratio of 8 and maximum operating temperature of 1,500 K. The atmospheric conditions are temperature of 300 K and pressure of 100 kPa. The processes can be approximated as below: 1- 2 isentropic compression 2- 3 constant volume heat addition 3- 4 isentropic expansion 4- 1 constant pressure heat removal a. Plot P-v and T-s diagrams for this cycle. b. Determine state conditions at the end...
An ideal Otto cycle engine, an ideal Diesel cycle engine, and a Stirling engine all have...
An ideal Otto cycle engine, an ideal Diesel cycle engine, and a Stirling engine all have a maximum volume of 1 liter. The volume at the end of combustion for the Otto and Diesel engines is 0.1 liter. The minimum volume for the Stirling engine is 0.1 liter. All three engines operate with air initially at 100 kPa, and have a minimum temperature of 300 K and a maximum temperature of 1200 K. Determine how much work is done for...
A heat engine that has maximum efficiency starts working by using 1 kg of water with...
A heat engine that has maximum efficiency starts working by using 1 kg of water with initial temperature Ti = 373K as a hot reservoir, and 1 kg of ice at T0 = 273K as its cold reservoir. As the engine goes through cycles, the water cools, and the ice melts. At some point, all of the ice will be melted. (a) What is the temperature of the water reservoir at that time? (b) What is the maximal amount of...
A Carnot heat engine receives 15 kW of heat at 1200 K and rejects heat at...
A Carnot heat engine receives 15 kW of heat at 1200 K and rejects heat at 300 K.   The power produced from the engine is used to drive a reversed Carnot cycle, acting as a refrigerator, where the low temperature is 260 K and the high temperature is 300 K. What is the cooling effect, the amount of heat removed at 260 K, and what is the COPc ? Ans:  6.5     73.125 kW
A heat engine is assumed to operate on a Carnot cycle. It receives 600kJ heat from...
A heat engine is assumed to operate on a Carnot cycle. It receives 600kJ heat from a high temperature reservoir at 600oC and rejects heat to a low temperature reservoir at 20oC. a. Calculate the thermal efficiency of the cycle. b. What is QL? c. What is the net work produced by this cycle? d. Does this process violate Kelvin-Plank statement? Explain. e. An inventor claimed that he built a heat engine operating between the same reservoirs that give a...
An engine has a hot reservoir temperature of 959 K and a cold reservoir temperature of...
An engine has a hot reservoir temperature of 959 K and a cold reservoir temperature of 600 K. The engine operates at four-fifths maximum efficiency. What is the efficiency of the engine?
The hot reservoir for a Carnot engine has a temperature of 933 K, while the cold...
The hot reservoir for a Carnot engine has a temperature of 933 K, while the cold reservoir has a temperature of 326 K. The heat input for this engine is 7160 J. The 326-K reservoir also serves as the hot reservoir for a second Carnot engine. This second engine uses the rejected heat of the first engine as input and extracts additional work from it. The rejected heat from the second engine goes into a reservoir that has a temperature...
1) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the...
1) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the compression process, the temperature is 20°C, and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine the cycle efficiency, work output, and the heat rejected 2) An air-standard Otto cycle operates with a minimum temperature of 300 K and a maximum temperature of 1700 K. The compression ratio of the cycle is 7. At the beginning of the compression process, the...
10) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the...
10) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the compression process, the temperature is 20°C, and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine the cycle efficiency, work output, and the heat rejected. 11)An air-standard Otto cycle operates with a minimum temperature of 300 K and a maximum temperature of 1700 K. The compression ratio of the cycle is 7. At the beginning of the compression process, the pressure...
An ideal Otto cycle with Argon as the working fluid has a compression ratio of 7....
An ideal Otto cycle with Argon as the working fluid has a compression ratio of 7. The minimum and maximum temperatures in the cycle are 290 and 1350 K. accounting for the constant specific heats at room temperature, determine (a) the amount of heat transferred to Argon during the heat addition process, (b) the thermal efficiency of Otto cycle, and (c) the thermal efficiency of a Carnot cycle operating between the same temperature limits.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT