Question

An inventor proposes a four-stroke cycle running on helium. The engine has a compression ratio of 8 and maximum operating temperature of 1,500 K. The atmospheric

conditions are temperature of 300 K and pressure of 100 kPa. The processes can be approximated as below:

1- 2 isentropic compression

2- 3 constant volume heat addition

3- 4 isentropic expansion

4- 1 constant pressure heat removal

a. Plot P-v and T-s diagrams for this cycle.

b. Determine state conditions at the end of each step by filling up the table below.

c. Heat addition

d. Net work

e. Thermal efficiency

Hint:

Cp = 5.193 kJ/kg.K,

Cv = 3.116 kJ/kg.K,

R = 2.077 kJ/kg.K,

k = 1.667

Answer #1

A Diesel cycle has a compression ratio of 12 and cut-off ratio
of 2. At the beginning of the isentropic-compression process, the
pressure and temperature are 100 kPa and 35°C (308 K),
respectively. During the constant-pressure process, heat is added
to the working fluid from a reservoir at a temperature of 1760°C
(2033 K). During the constant volume process, heat is rejected to
the environment, which is at 30°C (303 K) and 100kPa. For the air
involved, it may be...

Consider a cold air-standard Diesel cycle. At the beginning of
compression, 102 kPa, and 300 K. The mass of air is 0.120 kg, the
compression ratio is 16, and the cut-off ratio is 2.0
For a cold air-standard analysis use the following values: cp =
1.005 kJ/kgK, cv = 0.718 kJ/kgK, k=1.40, M=28.97 kg/kmol.
Determine the following :
(a) pressure at end of compression stroke, in kPa
(b) temperature at end of compression stroke, in K
(c) maximum temperature in...

An ideal Otto cycle has a compression ratio of 7. At the
beginning of the compression process, P1 = 90 kPa, T1 = 27°C, and
V1 = 0.004 m3. The maximum cycle temperature is 1147°C. For each
repetition of the cycle, calculate the heat rejection and the net
work production. Also, calculate the thermal efficiency and mean
effective pressure for this cycle. Use constant specific heats at
room temperature. The properties of air at room temperature are cp
= 1.005...

The compression ratio in an air-standard Otto cycle is 8. At the
beginning of the compression stroke the pressure is 14.7 lbf/in2
and the temperature is 600F. The heat transfer to the air during
the combustion process per cycle is 800 Btu/lbm. Determine: (a) The
pressure and temperature at the end of each process of the cycle.
(b) The thermal efficiency (use k = 1.4, Cv = 0.171 Btu/lbm
0F).

The compression ratio in an air-standard Otto cycle is 8. At the
beginning of the compression stroke the pressure is 14.7 lbf/in2
and the temperature is 600F. The heat transfer to the air during
the combustion process per cycle is 800 Btu/lbm. Determine: (a) The
pressure and temperature at the end of each process of the cycle.
(b) The thermal efficiency (use k = 1.4, Cv = 0.171 Btu/lbm
0F).

1. The compression ratio of an air powered diesel cycle is A = 18 and the cutting ratio is B = 2.2. The pressure of the air at the beginning of the compression process is C = 94 kPa and the temperature is D = 32 ° C. Considering that the specific temperatures change with temperature (using the air standard, not the cold air standard only, that is, using the relative specific volumes from the table) and accepting the gas...

An ideal Diesel cycle has a cut off ratio of 2. The
temperature of the air at the beginning and
at the end of the compression process are 300 K and 900 K
respectively. By utilizing constant
specific heats, taking the specific heat ratio, k = 1.4, Cp = 1.005
kJ/kg K and Cv = 0.718 kJ/kg
K. Determine the followings:
(i) The compression ratio. [5 marks]
(ii) The maximum cycle temperature. [5 marks]
(iii) The amount of heat transferred...

1) An air-standard Otto cycle has a compression ratio of 9. At
the beginning of the compression process, the temperature is 20°C,
and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine
the cycle efficiency, work output, and the heat rejected
2) An air-standard Otto cycle operates with a minimum
temperature of 300 K and a maximum temperature of 1700 K. The
compression ratio of the cycle is 7. At the beginning of the
compression process, the...

10) An air-standard Otto cycle has a compression ratio of 9. At
the beginning of the compression process, the temperature is 20°C,
and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine
the cycle efficiency, work output, and the heat rejected.
11)An air-standard Otto cycle operates with a minimum
temperature of 300 K and a maximum temperature of 1700 K. The
compression ratio of the cycle is 7. At the beginning of the
compression process, the pressure...

A four-cylinder, four-stroke engine is built
into an automobile. Within each cylinder of the engine, the
processes can be modeled as an air-standard Otto
cycle.
At the beginning of the compression process, the
cylinder volume is .559 L.
The temperature and pressure are 330 K and 1.5
bar, respectively. In the cycle, the maximum
temperature is 2200 K when the engine operates at
3000 RPM.
(4-stroke engine, 2 rotations per cycle, MW of air = 28.97
kg/kmol)
If the engine...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 22 minutes ago

asked 41 minutes ago

asked 51 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 3 hours ago