Question

An ideal Otto cycle engine, an ideal Diesel cycle engine, and a Stirling engine all have...

An ideal Otto cycle engine, an ideal Diesel cycle engine, and a Stirling engine all have a maximum volume of 1 liter. The volume at the end of combustion for the Otto and Diesel engines is 0.1 liter. The minimum volume for the Stirling engine is 0.1 liter. All three engines operate with air initially at 100 kPa, and have a minimum temperature of 300 K and a maximum temperature of 1200 K. Determine how much work is done for each cycle of the three engines and compare the thermal efficiency for each engine. Use a variable specific heat analysis using table A-17.

Really appreciate any help and especially any explanation... This class has killed me. :/

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the...
1) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the compression process, the temperature is 20°C, and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine the cycle efficiency, work output, and the heat rejected 2) An air-standard Otto cycle operates with a minimum temperature of 300 K and a maximum temperature of 1700 K. The compression ratio of the cycle is 7. At the beginning of the compression process, the...
10) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the...
10) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the compression process, the temperature is 20°C, and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine the cycle efficiency, work output, and the heat rejected. 11)An air-standard Otto cycle operates with a minimum temperature of 300 K and a maximum temperature of 1700 K. The compression ratio of the cycle is 7. At the beginning of the compression process, the pressure...
An ideal Otto cycle with Argon as the working fluid has a compression ratio of 7....
An ideal Otto cycle with Argon as the working fluid has a compression ratio of 7. The minimum and maximum temperatures in the cycle are 290 and 1350 K. accounting for the constant specific heats at room temperature, determine (a) the amount of heat transferred to Argon during the heat addition process, (b) the thermal efficiency of Otto cycle, and (c) the thermal efficiency of a Carnot cycle operating between the same temperature limits.
An ideal Otto cycle with Argon as the working fluid has a compression ratio of 7....
An ideal Otto cycle with Argon as the working fluid has a compression ratio of 7. The minimum and maximum temperatures in the cycle are 290 and 1350 K. accounting for the constant specific heats at room temperature, determine (a) the amount of heat transferred to Argon during the heat addition process, (b) the thermal efficiency of Otto cycle, and (c) the thermal efficiency of a Carnot cycle operating between the same temperature limits.
How would you rank the thermal efficiencies of ideal Diesel, Stirling and Carnot cycles if they...
How would you rank the thermal efficiencies of ideal Diesel, Stirling and Carnot cycles if they operate between the same temperature limits (the same Tmin and Tmax temperatures)?
An ideal Otto engine has a compression ratio of 10 and uses air as the working...
An ideal Otto engine has a compression ratio of 10 and uses air as the working fluid. The state of air at the beginning of the compression process is 100 kPa and 27 0C. The maximum temperature in the cycle is 2100K. (R=0.287 for air) (using variable specific heat) Draw the P-v diagram of the Otto cycle Determine the specific internal energies at the beginning and the end of the compression, Determine the specific internal energies before and after the...
A diesel engine operates at 3000 rpm on a standard Diesel cycle has a compression ratio...
A diesel engine operates at 3000 rpm on a standard Diesel cycle has a compression ratio of 14. The state of air at the beginning of the compression process is 98 kPa and 24 ?C. The maximum temperature in the cycle is not exceed 1850 ?C. Assume diesel fuel has a heating value of 45 MJ/kg. Use the PG model. a) Determine the thermal efficiency. b) Determine the specific fuel consumption. (kg/kJ) c) What-if Scenario: What would the thermal efficiency...
An ideal Diesel cycle has a cut off ratio of 2. The temperature of the air...
An ideal Diesel cycle has a cut off ratio of 2. The temperature of the air at the beginning and at the end of the compression process are 300 K and 900 K respectively. By utilizing constant specific heats, taking the specific heat ratio, k = 1.4, Cp = 1.005 kJ/kg K and Cv = 0.718 kJ/kg K. Determine the followings: (i) The compression ratio. [5 marks] (ii) The maximum cycle temperature. [5 marks] (iii) The amount of heat transferred...
Consider an ideal Brayton cycle that takes in air at 5°C and 80 kPa. The combustion...
Consider an ideal Brayton cycle that takes in air at 5°C and 80 kPa. The combustion adds 900 kJ/kg of energy to the air. Due to material properties of the engine, the maximum temperature in the cycle is 1200°C. Using cold-air-standard assumptions, determine a) The maximum permissible pressure ratio (i.e. the pressure ratio that corresponds to the maximum temperature being 1200°C). b) The maximum power output of the engine (i.e. the power output at the pressure ratio found in question...
A Diesel cycle engine is analyzed using the air standard method. Given the conditions at state...
A Diesel cycle engine is analyzed using the air standard method. Given the conditions at state 1, compression ratio (r), and cutoff ratio (rc) determine the efficiency and other values listed below. Note: The gas constant for air is R=0.287 kJ/kg-K. --Given Values-- T1 (K) = 322 P1 (kPa) = 120 r = 11.5 rc = 1.6 Specific internal energy (kJ/kg) at state 1: 229.86 Relative specific volume at state 1= 520.52 Relative specific volume at state 2= 45.26 Temperature...