Question

A hockey puck B rests on frictionless, level ice and is struck by a second puck...

A hockey puck B rests on frictionless, level ice and is struck by a second puck A, which was originally traveling at 40.0 m/s and which is deflected 30.0◦from its original direction. Puck B acquires a velocity at a 45.0◦to the original direction of A. The pucks have the same mass. (a) What is the speed of each puck after the collision?(b) What fraction of the original kinetic energy of puck A dissipated during the collision? please show each step you did.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 105 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck slapped...
A 105 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck slapped at him at a velocity of 27.7 m/s. Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. Take the puck's initial moving direction as positive. (a) What is the puck's final velocity (in m/s)? (keep 2 decimal places) (b) What is the goalie's final velocity (in m/s)? (keep 3...
A 67.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck slapped...
A 67.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck slapped at him at a velocity of 34.0 m/s. Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What would their final velocities (in m/s) be in this case? (Assume the original direction of the ice puck toward the goalie is in the positive direction. Indicate the direction with the...
Contents » A 81.0-kg ice hockey goalie, originally at rest, catches a 0.150-kg hockey puck slapped...
Contents » A 81.0-kg ice hockey goalie, originally at rest, catches a 0.150-kg hockey puck slapped at him at a velocity of 28.0 m/s. Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What is the final velocity of the goalie?
1. If a 2kg hockey puck moving on a frictionless surface at a velocity of 3m/s...
1. If a 2kg hockey puck moving on a frictionless surface at a velocity of 3m/s and moving on the x axis collides with a 4kg hockey puck travelling at 2m/s and moving on the y axis prior to collision collide, what is the final velocity and direction of each of the pucks if the 2kg puck is travelling at -1.5 m/s at 30˚ above the horizontal? (assume they don’t stick together) Draw a before and after picture.
a) A 70.0-kg ice hockey goalie, originally at rest, catches a 0.150-kg hockey puck slapped at...
a) A 70.0-kg ice hockey goalie, originally at rest, catches a 0.150-kg hockey puck slapped at him at a velocity of 35.0 m/ s. Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What would their final velocities be in this case? b) Suppose instead that the goalie caught the puck. What is the velocity of the goalie/puck system after the catch?
Two identical pucks collide on an air hockey table. One puck was originally at rest. If...
Two identical pucks collide on an air hockey table. One puck was originally at rest. If the incoming puck has a velocity of 6.50 m/s along the +x-axis and scatters to an angle of 32.0° above the +x-axis. A) What is the velocity (magnitude and direction) of the second puck? (You may use the result that θ1 − θ2 = 90° for elastic collisions of objects that have identical masses.) Velocity (magnitude) = _______ Velocity (direction) = ________ below +x-axis...
A 70.0-kg ice hockey goalie, originally at rest, has a 0.170-kg hockey puck slapped at him...
A 70.0-kg ice hockey goalie, originally at rest, has a 0.170-kg hockey puck slapped at him at a velocity of 35.5 m/s. Suppose the goalie and the puck have an elastic collision, and the puck is reflected back in the direction from which it came. What would the final velocities of the goalie and the puck be in this case? Assume that the collision is completely elastic.
A young 43-kg ice hockie goalie, originally at rest, catches a 0.145-kg hockey puck slapped at...
A young 43-kg ice hockie goalie, originally at rest, catches a 0.145-kg hockey puck slapped at him at a speed of 34.5 m/s. In this problem, take the original direction of the puck as positive. Part A) Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What would the final velocity of the puck, in meters per second, be in this case? Vf,2 = Part...
A 0.30-kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.20-kg...
A 0.30-kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.20-kg puck that is initially moving along the x-axis with a velocity of 8.5 m/s. After the collision, the 0.20-kg puck has a speed of 5.1 m/s at an angle of θ = 53° to the positive x-axis. (a) Determine the velocity of the 0.30-kg puck after the collision. magnitude     m/s direction ° from the positive x-axis (b) Find the fraction of kinetic energy lost...
Two identical pucks collide on an air hockey table. One puck was originally at rest. If...
Two identical pucks collide on an air hockey table. One puck was originally at rest. If the incoming puck has a velocity of 7.10 m/s along the +x-axis and scatters to an angle of 36.0° above the +x-axis, what is the velocity (magnitude and direction) of the second puck? (You may use the result that θ1 − θ2 = 90° for elastic collisions of objects that have identical masses.) Velocity (magnitude) = Velocity (direction) = below +x-axis What is the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT