Question

During a collision between a photon and an electron, there is conservation of (A) energy, only...

During a collision between a photon and an electron, there is conservation of

(A) energy, only

(B) momentum, only

(C) both energy and momentum

(D) neither energy nor momentum

As a photon loses energy during a collision, its wavelength

(A) decreases

(B) increases

(C) remains the same

Homework Answers

Answer #1

During a collision between a photon and an electron, there is conservation of

(C) both energy and momentum

the collision between a photon and an electron is considered to be perfectly elastic and both momentum and energy are conserved.

As a photon loses energy during a collision, its wavelength

(A) increases

The energy of a photon is given by the relation, E = hc/λ

Where, h- Planck’s constant

                c-speed of light

                λ- wavelength

it is clear that a decrease in energy results in increase of wavelength.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In the Compton effect, a 0.133 nm photon strikes a free electron in a head-on collision...
In the Compton effect, a 0.133 nm photon strikes a free electron in a head-on collision and knocks it into the forward direction. The rebounding photon recoils directly backward. Use conservation of (relativistic) energy and momentum to determine the kinetic energy of the electron. Use the equation p=E/c=hf/c=h/λ. K =    eV Determine the wavelength of the recoiling photon. λ′ =    nm
In the Compton effect, a 0.128 nm photon strikes a free electron in a head-on collision...
In the Compton effect, a 0.128 nm photon strikes a free electron in a head-on collision and knocks it into the forward direction. The rebounding photon recoils directly backward. Part A Use conservation of (relativistic) energy and momentum to determine the kinetic energy of the electron. Use the equation p=Ec=hfc=h?. K = eV Part B Part complete Determine the wavelength of the recoiling photon. ?? = 0.133 nm
In a Compton collision between a 10 MeV photon and an electron, the energy of the...
In a Compton collision between a 10 MeV photon and an electron, the energy of the photon scattered at a right angle is approximately
Derive an expression for the interaction between a photon incident on a nearly-free electron in an...
Derive an expression for the interaction between a photon incident on a nearly-free electron in an aluminum target. Make sure to consider conservation of both relativistic energy and momentum for the photon and electron before and after the interaction. If an incident photon has an energy of 662 keV, calculate the energy of the photon that is scattered through an angle of 35˚.
Which of the following statements is correct? Select one: a. As the energy of a photon...
Which of the following statements is correct? Select one: a. As the energy of a photon increases, its frequency decreases. b. As the wavelength of a photon decreases, its energy decreases. c. The product of wavelength and frequency of electromagnetic radiation depends on the color of the wave. d. As the wavelength of a photon increases, its frequency increases. e. As the frequency of a photon increases, its energy increases.
A 0.343-nm photon collides with a stationary electron. After the collision, the electron moves forward and...
A 0.343-nm photon collides with a stationary electron. After the collision, the electron moves forward and the photon recoils backwards. (a) Find the momentum of the electron. kg · m/s (b) Find the kinetic energy of the electron. eV
Compton Scattering.A photon of wavelength λcollides elastically with a free electron (initially at rest) of mass...
Compton Scattering.A photon of wavelength λcollides elastically with a free electron (initially at rest) of mass m. If the photon scatters at an angle φfrom its original direction of travel, use conservation of relativistic linear momentum and conservation of relativistic energy to derive a mathematical expression for the scattered photon’s wavelength λ’.
A photon with wavelength of 0.1110 nm collides with a free electron that is initially at...
A photon with wavelength of 0.1110 nm collides with a free electron that is initially at rest. After the collision the wavelength is 0.1135 nm . Part A What is the kinetic energy of the electron after the collision? K = ??? J Part B What is its speed? v = ??? m/s Part C If the electron is suddenly stopped (for example, in a solid target), all of its kinetic energy is used to create a photon. What is...
When an x-ray photon collides with an electron at rest,... Explain. A) the electron turns into...
When an x-ray photon collides with an electron at rest,... Explain. A) the electron turns into a photon. B) the electron absorbs the photon and becomes a proton. C) the energy of the x-ray photon is completely absorbed by the electron, which now has extra energy and momentum. D) the magnitude of the scattered photon's momentum is the same as that of the incident x-ray photon, but the direction of the momentum is altered. E) the frequency of the scattered...
An incident x-ray photon is scattered from a free electron that is initially at rest. The...
An incident x-ray photon is scattered from a free electron that is initially at rest. The photon is scattered straight back at an angle of 180? from its initial direction. The wavelength of the scattered photon is 8.80×10?2 nm . (A) What is the wavelength of the incident photon? (B) What is the magnitude of the momentum of the electron after the collision?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT