Question

Derive an expression for the interaction between a photon incident on a nearly-free electron in an...

Derive an expression for the interaction between a photon incident on a nearly-free electron in an aluminum target. Make sure to consider conservation of both relativistic energy and momentum for the photon and electron before and after the interaction. If an incident photon has an energy of 662 keV, calculate the energy of the photon that is scattered through an angle of 35˚.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Compton Scattering.A photon of wavelength λcollides elastically with a free electron (initially at rest) of mass...
Compton Scattering.A photon of wavelength λcollides elastically with a free electron (initially at rest) of mass m. If the photon scatters at an angle φfrom its original direction of travel, use conservation of relativistic linear momentum and conservation of relativistic energy to derive a mathematical expression for the scattered photon’s wavelength λ’.
A photon scatters off a free electron. The wavelength of the incident photon is 27.6 ✕...
A photon scatters off a free electron. The wavelength of the incident photon is 27.6 ✕ 10−4 nm. The electron recoils with a kinetic energy that is 0.87 times the energy of the scattered photon. Determine the scattering angle.
An incident x-ray photon is scattered from a free electron that is initially at rest. The...
An incident x-ray photon is scattered from a free electron that is initially at rest. The photon is scattered straight back at an angle of 180? from its initial direction. The wavelength of the scattered photon is 8.80×10?2 nm . (A) What is the wavelength of the incident photon? (B) What is the magnitude of the momentum of the electron after the collision?
A 200 keV photon scatters from a free electron. The scattered photon has 10% less energy...
A 200 keV photon scatters from a free electron. The scattered photon has 10% less energy than the original photon. (a) Through what angle has the photon been scattered? (b) What is the kinetic energy of the scattered electron?{44o}
When an x-ray photon with λλ 0 = 0.58 nm is incident on a target, it...
When an x-ray photon with λλ 0 = 0.58 nm is incident on a target, it undergoes Compton Scattering and is scattered at an angle of 26°. What is the wavelength λλ ' of the scattered photon (in nm)? (keep 7 significant figures in your answer) What is the energy (E) if the incident photon (in keV)? Use h = 4.136 x 10-15 eVs and c = 3 x 108 m/s. (keep 7 significant figures in your answer) What is...
X-rays of wavelength 1.00 × 10−10m are incident on a target containing free electrons, ... a...
X-rays of wavelength 1.00 × 10−10m are incident on a target containing free electrons, ... a Compton scattered x-ray photon of wavelength 1.02×10−10m is detected at an angle of 90◦ to the ... Obtain as much information as possible about the momentum of the scattering electron before and after the scattering process.
In the Compton effect, a 0.133 nm photon strikes a free electron in a head-on collision...
In the Compton effect, a 0.133 nm photon strikes a free electron in a head-on collision and knocks it into the forward direction. The rebounding photon recoils directly backward. Use conservation of (relativistic) energy and momentum to determine the kinetic energy of the electron. Use the equation p=E/c=hf/c=h/λ. K =    eV Determine the wavelength of the recoiling photon. λ′ =    nm
In the Compton effect, a 0.128 nm photon strikes a free electron in a head-on collision...
In the Compton effect, a 0.128 nm photon strikes a free electron in a head-on collision and knocks it into the forward direction. The rebounding photon recoils directly backward. Part A Use conservation of (relativistic) energy and momentum to determine the kinetic energy of the electron. Use the equation p=Ec=hfc=h?. K = eV Part B Part complete Determine the wavelength of the recoiling photon. ?? = 0.133 nm
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT