Question

Using the method of joints, determine the force in each member of the truss shown. State...

Using the method of joints, determine the force in each member of the truss shown. State whether each member is in tension or compression.

Homework Answers

Answer #1

Ok perfect, please repost. I will take this post to explain briefly the method of joints so you have a guide to solve the problems:

The free-body diagram of any joint is a concurrent force system in which the summation of moment will be of no help.Employ this equations:

This means that to solve for the forces acting on a joint, select a joint with no more than two unknown forces . This means selecting a joint acted on by only two members. We can assume any unknown member to be either tension or compression. If negative value is obtained, this means that the force is opposite in action to that of the assumed direction. Once the forces in one joint are determined, their effects on adjacent joints are known. We then continue solving on successive joints until all members are found.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the truss shown in (Figure 1). Suppose that F1 = 4.5 kN and F2 =...
Consider the truss shown in (Figure 1). Suppose that F1 = 4.5 kN and F2 = 6 kN . Determine the force in member CF and state if this member is in tension or compression. Determine the force in member CG and state if this member is in tension or compression. Hibbeler14.ch6.p40.jpg
Consider the truss shown in (Figure 1). Suppose that FFF = 7 kNkN . Figure 1...
Consider the truss shown in (Figure 1). Suppose that FFF = 7 kNkN . Figure 1 of 1The figure shows a truss consisting of 21 members joined by 12 pins. The pins at A, B, C, D, E, F and G are located on the same horizontal line at a distance of 2 meters from each other from left to right in this order. The pin at A is fixed on a horizontal surface and the pin at G is...
1) A redundant member is a member that: Answer: A) can resist tension or compression. B)...
1) A redundant member is a member that: Answer: A) can resist tension or compression. B) is not necessary for stability. C) consists of two structural sections. D) resists stress only if another member fails. 2) A truss cannot support any load between panel points. Answer: True False 3) Although many trusses require complex fabrication, they are often economical structural systems. Answer: True False 4) The net forces on truss joints are always zero. Answer: True False 5) In a...
I have a General Question for Statics (Structural Analysis). For Truss questions (method of joints and...
I have a General Question for Statics (Structural Analysis). For Truss questions (method of joints and zero-force members), how do you know when you need to find the moment at the pin joint? The book say's, when each joint has at least three unknown forces. Is this true? Really confused on how to know when you need to find the moment or not.
Write up a brief set of steps (similar to what was presented for Method of Joints)...
Write up a brief set of steps (similar to what was presented for Method of Joints) that describe the process for solving a truss using the Method of Sections
Truss Analysis 1.      Select a material and a cross section for the members. 2.      Choose four...
Truss Analysis 1.      Select a material and a cross section for the members. 2.      Choose four arbitrarily placed points. Connect them as two triangles. No members can be vertical or horizontal and none can be aligned. 3.      Draw the truss and label the measured lengths. 4.      Select two support points and two load points. 5.      Load the truss vertically with a load at each load point. 6.      Calculate the reactions and the forces within the members. 7.      Calculate the change...
Q1: Design L2L3 member as shown below using double-angle section with 3/8-in gusset plate between the...
Q1: Design L2L3 member as shown below using double-angle section with 3/8-in gusset plate between the angles. Assume two-lines of three ¾-in bolts in each vertical angle-leg, spaced at 4-in on center. Use A36 steel. ​ Q2: Draw (sketch) the connections at L2 and L3 assuming all truss members are designed using double angle sections, and using the same amount of bolts. PD= 60 kips, PL=48 kips​   
The state of stress at a point in a member is shown on the element. Suppose...
The state of stress at a point in a member is shown on the element. Suppose that σxσx = -60 MPaMPa , σyσy = -100 MPaMPa , τxyτxy = -27 MPaMPa . 1. Determine the normal stress component acting on the plane AB. σx′ 2. Determine the shear stress component acting on the plane AB. τx′y′
Apply the method of sections to determine the internal loadings in a member at a specific...
Apply the method of sections to determine the internal loadings in a member at a specific point. I just need an example
A Diesel cycle engine is analyzed using the air standard method. Given the conditions at state...
A Diesel cycle engine is analyzed using the air standard method. Given the conditions at state 1, compression ratio (r), and cutoff ratio (rc) determine the efficiency and other values listed below. Note: The gas constant for air is R=0.287 kJ/kg-K. --Given Values-- T1 (K) = 322 P1 (kPa) = 120 r = 11.5 rc = 1.6 Specific internal energy (kJ/kg) at state 1: 229.86 Relative specific volume at state 1= 520.52 Relative specific volume at state 2= 45.26 Temperature...