Question

An electron is trapped in a 0.16 nm wide finite square well of height ?? =...

  1. An electron is trapped in a 0.16 nm wide finite square well of height ?? = 2.0 keV. Estimate at what distance outside the walls of the well the ground state wave function drops to 1.0% of its value at the walls.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electron is bound in a finite square well of width 1.85 nm and finite depth...
An electron is bound in a finite square well of width 1.85 nm and finite depth U0=6E?, where E? is the ground-state energy for an infinitely deep potential well that has the same width. If the electron is initially in the ground state level of the finite square well, E1=0.625E?, and absorbs a photon, what maximum wavelength can the photon have and still liberate the electron from the finite well?
An electron is bound in a finite square well of width 2.00 nm and finite depth...
An electron is bound in a finite square well of width 2.00 nm and finite depth U0=6E?, where E?is the ground-state energy for an infinitely deep potential well that has the same width. Part A If the electron is initially in the ground state level of the finite square well, E1=0.625E?, and absorbs a photon, what maximum wavelength can the photon have and still liberate the electron from the finite well? Express your answer numerically in meters using three significant...
A particle is trapped in an infinite potential well. Describe what happens to the particle’s ground-state...
A particle is trapped in an infinite potential well. Describe what happens to the particle’s ground-state energy and wave function as the potential walls become finite and get lower and lower until they finally reach zero (U = 0 everywhere).
Suppose that an electron trapped in a one-dimensional infinite well of width 0.341 nm is excited...
Suppose that an electron trapped in a one-dimensional infinite well of width 0.341 nm is excited from its first excited state to the state with n = 5. 1 What energy must be transferred to the electron for this quantum jump? 2 The electron then de-excites back to its ground state by emitting light. In the various possible ways it can do this, what is the shortest wavelengths that can be emitted? 3 What is the second shortest? 4 What...
An electron is trapped in an infinite square well potential of width 3L, which is suddenly...
An electron is trapped in an infinite square well potential of width 3L, which is suddenly compressed to a width of L, without changing the electron’s energy. After the expansion, the electron is found in the n=1 state of the narrow well. What was the value of n for the initial state of the electron in the wider well?
An electron is in the ground state of an infinite square well. The energy of the...
An electron is in the ground state of an infinite square well. The energy of the ground state is E1 = 1.13 eV. (a) What wavelength of electromagnetic radiation would be needed to excite the electron to the n = 7 state? nm (b) What is the width of the square well? nm
An electron is in an infinite one-dimensional square well of width L = 0.12 nm. 1)...
An electron is in an infinite one-dimensional square well of width L = 0.12 nm. 1) First, assume that the electron is in the lowest energy eigenstate of the well (the ground state). What is the energy of the electron in eV? E = 2) What is the wavelength that is associated with this eigenstate in nm? λ = 3) What is the probability that the electron is located within the region between x = 0.048 nm and x =...
An electron is trapped in a square well of unknown width, L. It starts in unknown...
An electron is trapped in a square well of unknown width, L. It starts in unknown energy level, n. When it falls to level n-1 it emits a photon of wavelength λphoton = 2280 nm. When it falls from n-1 to n-2, it emits a photon of wavelength λphoton = 3192 nm. 1) What is the energy of the n to n-1 photon in eV? En to n-1 = 2) What is the energy of the n-1 to n-2 photon...
An infinitely deep square well has width L = 2.5 nm. The potential energy is V...
An infinitely deep square well has width L = 2.5 nm. The potential energy is V = 0 eV inside the well (i.e., for 0 ≤ x ≤ L). Seven electrons are trapped in the well. 1) What is the ground state (lowest) energy of this seven electron system in eV? Eground = 2) What is the energy of the first excited state of the system in eV? NOTE: The first excited state is the one that has the lowest...
An electron was inserted into a quantum well that was L (nm) long to determine the...
An electron was inserted into a quantum well that was L (nm) long to determine the behavior and location of the electron. Suppose that the wall of a quantum well has a finite V0 photoentral. At this time, perfectly guide the mathematical expression of the state function psi and the probability density function of the electron. And how can we explain the behavior of the former in this case?