Question

A bullet is fired horizontally at two blocks at rest on a friction table. The bullet...

A bullet is fired horizontally at two blocks at rest on a friction table. The bullet passes through block 1 ( mass = 1.50 kg) and embeds itself in block 2 (mass = 1.65 kg). The block end up with speed ?1 = 0.530 ?/? and ?2 = 1.20 ?/?. Neglecting the material removed from block 1 by the bullet, find the speed of the bullet as it, a.) enters block 1 (5 pts) b.) as it leaves block 1 (5 pts)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In Figure (1), a 3.50 g bullet is fired horizontally at two blocks at rest on...
In Figure (1), a 3.50 g bullet is fired horizontally at two blocks at rest on a frictionless table. The bullet passes through block 1 (mass 1.42 kg) and embeds itself in block 2 (mass 1.88 kg). The blocks end up with speeds v1 = 0.610 m/s and v2 = 1.31 m/s (see Figure (2)). Neglecting the material removed from block 1 by the bullet, find the speed of the bullet as it (a) leaves and (b) enters block 1.
A bullet of mass 6.0g is fired horizontally into a 2.6kg wooden block at rest on...
A bullet of mass 6.0g is fired horizontally into a 2.6kg wooden block at rest on a horizontal surface. The coefficient of kinetic friction between the block and surface is 0.38. The bullet comes to rest in the block, which moves 1.8m. 1)What is the speed of the block immediately after the bullet comes to rest within it? 2)At what speed is the bullet fired?
A bullet of mass 20 g is fired horizontally from a gun with a velocity of...
A bullet of mass 20 g is fired horizontally from a gun with a velocity of 1200 m/s into a wooden block of mass 10.0 kg sitting on a horizontal table. If the bullet embeds itself into the block, find the velocity of the block after being hit by the bullet.
A bullet of mass 4.5 g is fired horizontally into a 2.4 kg wooden block at...
A bullet of mass 4.5 g is fired horizontally into a 2.4 kg wooden block at rest on a horizontal surface. The bullet is embedded in the block. The speed of the block immediately after the bullet stops relative to it is 2.7 m/s. At what speed is the bullet fired?
Two 500 g blocks of wood are 2.0 m apart on a frictionless table. A 9.0...
Two 500 g blocks of wood are 2.0 m apart on a frictionless table. A 9.0 g bullet is fired at 430 m/s toward the blocks. It passes all the way through the first block, then embeds itself in the second block. The speed of the first block immediately afterward is 5.8 m/s . What is the speed of the second block after the bullet stops?
A 4.00g bullet is moving horizontally with a velocity of +355 m/s, where the + sign...
A 4.00g bullet is moving horizontally with a velocity of +355 m/s, where the + sign indicates that it is moving to the right (see part a of the drawing). The bullet is approaching two blocks resting on a horizontal frictionless surface. Air resistance is negligible. The bullet passes completely through the first block (an inelastic collision) and embeds itself in the second one, as indicated in part b. Note that both blocks are moving after the collision with the...
A 4.00-g bullet is moving horizontally with a velocity of 355 m/s, where the sign indicates...
A 4.00-g bullet is moving horizontally with a velocity of 355 m/s, where the sign indicates that it is moving to the right (see part a of the drawing). The bullet is approaching two blocks resting on a horizontal frictionless surface. Air resistance is negligible. The bullet passes completely through the first block (an inelastic collision) and embeds itself in the second one, as indicated in part b. Note that both blocks are moving after the collision with the bullet....
A bullet of mass 6.00 g is fired horizontally into a wooden block of mass 1.29...
A bullet of mass 6.00 g is fired horizontally into a wooden block of mass 1.29 kg resting on a horizontal surface. The coefficient of kinetic friction between block and surface is 0.210. The bullet remains embedded in the block, which is observed to slide a distance 0.290 m along the surface before stopping. What was the initial speed of the bullet?
A 24.0g bullet is fired horizontally, embedding itself in a 10.0kg block initially at rest on...
A 24.0g bullet is fired horizontally, embedding itself in a 10.0kg block initially at rest on a horizontal ice surface. The block (with the bullet embedded) slides along the ice, coming to rest in 2.00s at a distance of 60.0cm from its original position. Assume that the frictional force stopping the block is constant. a) Calculate the initial velocity of the bullet-block combination. b) Calculate the initial velocity of the bullet. c) Is this an elastic or inelastic collision? How...
A 5.14-g bullet is moving horizontally with a velocity of +342 m/s, where the sign +...
A 5.14-g bullet is moving horizontally with a velocity of +342 m/s, where the sign + indicates that it is moving to the right (see part a of the drawing). The bullet is approaching two blocks resting on a horizontal frictionless surface. Air resistance is negligible. The bullet passes completely through the first block (an inelastic collision) and embeds itself in the second one, as indicated in part b. Note that both blocks are moving after the collision with the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT