Question

Two asteroids in space that are near each other experience a force of 5,107 N due...

Two asteroids in space that are near each other experience a force of 5,107 N due to the gravitational force between them.  If their positioning was changed so that they were spaced 2 times their original distance apart, what would the new force of attraction between them be?

A Ferris wheel at a carnival has a radius of 12 m and turns so that the speed of the riders is 4.9 m/s. What is the magnitude of the centripetal acceleration that the riders experience?

9.9 J of work is done to push a 850-g puck across a frictionless, icy surface. If the puck had initially been at rest, what speed will it have after this work has been done?

A spring with a constant of 1,276 N/m is being used to launch a 0.41-kg mass up a frictionless incline. If the spring is compressed by 0.15 m, what is the maximum height up the incline the mass will reach?

During a collision, a 2000-kg car experiences an impulse of 564 N·s.  What is the change in momentum of the car?

A 0.7-kg object is in a collision where it experiences a 4 N·s impulse.  If the initial velocity of the object was -3 m/s, what will the final velocity of the object be after the collision?






Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1- During a collision, a 2000-kg car experiences an impulse of 317 N·s.  What is the change...
1- During a collision, a 2000-kg car experiences an impulse of 317 N·s.  What is the change in momentum of the car? 2- A 0.8-kg object is in a collision where it experiences a -6.2 N·s impulse.  If the initial velocity of the object was -1.6 m/s, what will the final velocity of the object be after the collision? 3- A uniform rod has a pivot point at its center. A mass of 0.19-kg is hung 0.15 m from the pivot on...
1) A Red Car and a Blue Truck are driving down a winding road. Through the...
1) A Red Car and a Blue Truck are driving down a winding road. Through the first curve in the road, the Red Car is driving twice as fast as the Blue Truck. The second curve is half the radius of the first, which causes the Red Car to slow down to half the speed of the Blue Truck to drive around the curve. Rank the acceleration each vehicle experiences in each curve from largest to smallest. -blue truck in...
Rex(m=86 kg) and Tex(m=96 kg) board the bumper cars at the local Carnival. Rex is moving...
Rex(m=86 kg) and Tex(m=96 kg) board the bumper cars at the local Carnival. Rex is moving at a full speed of 2.05 m/s when he rear-ends Tex who is at rest in his path. Tex lunges forward at 1.4 m/s. 1. Determine the post-collision speed of Rex. Answer: 0.55 m/s 2. What is the impulse that Tex's car experiences due to Rex's car? Answer: 128.8 kg*m/s I provided the answers but I need the work done for it, thank you!
1) A crash test dummy with a mass of 65-kg is in a moving car going...
1) A crash test dummy with a mass of 65-kg is in a moving car going at 20 m/s, until it crashes into a wall. If the applied force was measured at 1,750 N, how long (in seconds) did the collision last? 2) Consider two hockey pucks on frictionless ice: Puck A with a mass 1.10 kg, and Puck B with a mass of 0.60 kg. Puck A is initially moving to the right at 1.75 m/s towards puck B,...
A 0.51-kg object connected to a light spring with a force constant of 20.6 N/m oscillates...
A 0.51-kg object connected to a light spring with a force constant of 20.6 N/m oscillates on a frictionless horizontal surface. The spring is compressed 4.0 cm and released from rest. (a) Determine the maximum speed of the object. m/s (b) Determine the speed of the object when the spring is compressed 1.5 cm. m/s (c) Determine the speed of the object as it passes the point 1.5 cm from the equilibrium position. m/s (d) For what value of x...
A 0.55-kg object connected to a light spring with a force constant of 19.8 N/m oscillates...
A 0.55-kg object connected to a light spring with a force constant of 19.8 N/m oscillates on a frictionless horizontal surface. The spring is compressed 4.0 cm and released from rest. (a) Determine the maximum speed of the object. m/s (b) Determine the speed of the object when the spring is compressed 1.5 cm. m/s (c) Determine the speed of the object as it passes the point 1.5 cm from the equilibrium position. m/s (d) For what value of x...
A 0.53-kg object connected to a light spring with a force constant of 22.2 N/m oscillates...
A 0.53-kg object connected to a light spring with a force constant of 22.2 N/m oscillates on a frictionless horizontal surface. The spring is compressed 4.0 cm and released from rest. (a) Determine the maximum speed of the object. m/s (b) Determine the speed of the object when the spring is compressed 1.5 cm. m/s (c) Determine the speed of the object as it passes the point 1.5 cm from the equilibrium position. m/s (d) For what value of x...
A 0.34 kg object connected to a light spring with a force constant of 22.2 N/m...
A 0.34 kg object connected to a light spring with a force constant of 22.2 N/m oscillates on a frictionless horizontal surface. If the spring is compressed 4.0 cm and released from rest. (a) Determine the maximum speed of the object. cm/s (b) Determine the speed of the object when the spring is compressed 1.5 cm. cm/s (c) Determine the speed of the object when the spring is stretched 1.5 cm. cm/s (d) For what value of x does the...
A 0.33 kg object connected to a light spring with a force constant of 18.2 N/m...
A 0.33 kg object connected to a light spring with a force constant of 18.2 N/m oscillates on a frictionless horizontal surface. If the spring is compressed 4.0 cm and released from rest. (a) Determine the maximum speed of the object. ______ cm/s (b) Determine the speed of the object when the spring is compressed 1.5 cm. __________cm/s (c) Determine the speed of the object when the spring is stretched 1.5 cm. ________cm/s (d) For what value of x does...
A 0.48-kg object connected to a light spring with a force constant of 17.8 N/m oscillates...
A 0.48-kg object connected to a light spring with a force constant of 17.8 N/m oscillates on a frictionless horizontal surface. Assume the spring is compressed 4.5 cm and released from rest. (a) Determine the maximum speed of the object. (b) Determine the speed of the object when the spring is compressed 1.8 cm (c) Determine the speed of the object as it passes the point 1.8 cm from the equilibrium position (d) For what value of x does the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT