Question

Calculate the translational speed of a cylinder when it reaches the foot of an incline 6.85...

Calculate the translational speed of a cylinder when it reaches the foot of an incline 6.85 m high. Assume it starts from rest and rolls without slipping.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
What will be the speed of a solid sphere when it reaches the bottom of an...
What will be the speed of a solid sphere when it reaches the bottom of an incline if it starts from rest at a vertical height 5.0m and rolls without slipping? See Figure. (Assume plenty of static friction, which does no work, so no slipping takes place.)
A solid cylinder rolls without slipping down a 30° incline that is 5.0 m long. The...
A solid cylinder rolls without slipping down a 30° incline that is 5.0 m long. The cylinder's mass is 3.0 kg and its diameter is 44 cmcm . The cylinder starts from rest at the top of the ramp. 1) What is the linear speed of the center of the cylinder when it reaches the bottom of the ramp. 2) What is the angular speed of the cylinder about its center at the bottom of the ramp. 3) What is...
A solid cylinder starts from rest at the top of an incline of height h =...
A solid cylinder starts from rest at the top of an incline of height h = 0.7 m and rolls down without slipping. Ignoring friction, determine the speed at the bottom of the incline. Draw and label a figure.
A sphere of radius r=34.5 cm and mass m= 1.80kg starts from rest and rolls without...
A sphere of radius r=34.5 cm and mass m= 1.80kg starts from rest and rolls without slipping down a 30.0 degree incline that is 10.0 m long. calculate the translational and rotational speed when it reaches the bottom.
A sphere of radius r0 = 23.0 cm and mass m = 1.20kg starts from rest...
A sphere of radius r0 = 23.0 cm and mass m = 1.20kg starts from rest and rolls without slipping down a 35.0 ∘ incline that is 13.0 m long. A. Calculate its translational speed when it reaches the bottom. B. Calculate its rotational speed when it reaches the bottom. C. What is the ratio of translational to rotational kinetic energy at the bottom?
A solid cylinder of radius 0.35 m is released from rest at a height of 1.8...
A solid cylinder of radius 0.35 m is released from rest at a height of 1.8 m and rolls down an incline without slipping. What is the angular speed of the cylinder when it reaches the bottom of the incline? (Icylinder = 1 2mr2)
A hoop I = M R2 starts from rest and rolls without slipping down an incline...
A hoop I = M R2 starts from rest and rolls without slipping down an incline with h = 7.0 m above a level floor. The translational center-of-mass speed vcm of the hoop on the level floor is
A solid cylinder rolls without slipping down an incline starting from rest. At the same time...
A solid cylinder rolls without slipping down an incline starting from rest. At the same time a box starts from rest at the same altitude and slides down the same incline with negligible friction. Which arrives at the bottom first? A. It is impossible to determine. B. the box C. the cylinder D. Both arrive at the same time.
A cylinder rollas without slippinh down a 30° incline that is 5m long. the cylinders mass...
A cylinder rollas without slippinh down a 30° incline that is 5m long. the cylinders mass is 3kg and diameter is 36.5cm. the cylinder starts from the top of the ramp. a Whats the linear speed when it reaches the bottom of the ramp b whats the angular speed of the cylinder about its centre at the bottom of the ramp c what is the angular displacement in radians this cylinder turns as it rolls down the incline d what...
A solid sphere of uniform density starts from rest and rolls without slipping a distance of...
A solid sphere of uniform density starts from rest and rolls without slipping a distance of d = 4.4 m down a θ = 22°incline. The sphere has a mass  M = 4.3 kg and a radius R = 0.28 m. 1)Of the total kinetic energy of the sphere, what fraction is translational? KE tran/KEtotal = 2)What is the translational kinetic energy of the sphere when it reaches the bottom of the incline? KE tran = 3)What is the translational speed...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT