Question

A sphere of radius r0 = 23.0 cm and mass m = 1.20kg starts from rest...

A sphere of radius r0 = 23.0 cm and mass m = 1.20kg starts from rest and rolls without slipping down a 35.0 ∘ incline that is 13.0 m long.

A. Calculate its translational speed when it reaches the bottom.

B. Calculate its rotational speed when it reaches the bottom.

C. What is the ratio of translational to rotational kinetic energy at the bottom?

Homework Answers

Answer #1

Given,

r = 23 cm ; m = 1.2 kg ; theta = 35 deg ; L = 13 m

A)H = L sin(theta)

H = 13 x sin35 = 7.46 m

PE = m g h = 1.2 x 9.8 x 7.46 = 87.73

from conservation of energy

PE = KEtrans + KErot

PE = 1/2 m v^2 + 1/2 I w^2

m g h = 1/2 m v^2 + 1/2 x 2/5 m r^2 v^2/r^2

since, I = 2/5 m r^2 and v = r w => w = v/r

87.73 = 7/10 m v^2

v = sqrt (10 x 87.73/7 x 1.2) = 11.2 m/s

Hence, v = 10.22 m/s

B)w = v/r = 10.22/0.23 = 44.43 rad/s

Hence, w = 44.43 rad/s

C)KEtrans = 1/2 m v^2

KEtrans = 0.5 x 1.2 x 11.2^2 = 62.67 J

KErot = 87.73 - 62.67 = 25.06 J

KEtran/KErot = 62.67/25.06 = 2.5

Hence, KEtrans/KErot = 2.5

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A sphere of radius r0 = 22.0 cm and mass m = 1.20kg starts from rest...
A sphere of radius r0 = 22.0 cm and mass m = 1.20kg starts from rest and rolls without slipping down a 38.0 degree incline that is 11.0 mm long. A. Calculate its translational speed when it reaches the bottom. B. Calculate its rotational speed when it reaches the bottom. C. What is the ratio of translational to rotational kinetic energy at the bottom? D. Does your answer in part A depend on mass or radius of the ball? E....
A sphere of radius r0 = 22.0 cm and mass m = 1.20kg starts from rest...
A sphere of radius r0 = 22.0 cm and mass m = 1.20kg starts from rest and rolls without slipping down a 34.0 degree incline that is 12.0 m long. Part A: Calculate its translational speed when it reaches the bottom. (m/s) Part B: Calculate its rotational speed when it reaches the bottom. (rad/s) Part C: What is the ratio of translational to rotational kinetic energy at the bottom? (Ktr/Krot) Part D: Does your answer in part A depend on...
A sphere of radius r=34.5 cm and mass m= 1.80kg starts from rest and rolls without...
A sphere of radius r=34.5 cm and mass m= 1.80kg starts from rest and rolls without slipping down a 30.0 degree incline that is 10.0 m long. calculate the translational and rotational speed when it reaches the bottom.
A solid sphere of uniform density starts from rest and rolls without slipping a distance of...
A solid sphere of uniform density starts from rest and rolls without slipping a distance of d = 4.4 m down a θ = 22°incline. The sphere has a mass  M = 4.3 kg and a radius R = 0.28 m. 1)Of the total kinetic energy of the sphere, what fraction is translational? KE tran/KEtotal = 2)What is the translational kinetic energy of the sphere when it reaches the bottom of the incline? KE tran = 3)What is the translational speed...
A uniform, solid sphere of radius 3.00 cm and mass 2.00 kg starts with a purely...
A uniform, solid sphere of radius 3.00 cm and mass 2.00 kg starts with a purely translational speed of 1.25 m/s at the top of an inclined plane. The surface of the incline is 1.00 m long, and is tilted at an angle of 25.0 ∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed v 2 at the bottom of the ramp.
A uniform, solid sphere of radius 4.50 cm and mass 2.25 kg starts with a purely...
A uniform, solid sphere of radius 4.50 cm and mass 2.25 kg starts with a purely translational speed of 1.25 m/s at the top of an inclined plane. The surface of the incline is 2.75 m long, and is tilted at an angle of 22.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ?2 at the bottom of the ramp. ?2=__________ m/s
A uniform, solid sphere of radius 3.50 cm and mass 1.25 kg starts with a purely...
A uniform, solid sphere of radius 3.50 cm and mass 1.25 kg starts with a purely translational speed of 2.50 m/s at the top of an inclined plane. The surface of the incline is 1.50 m long, and is tilted at an angle of 28.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ?2 at the bottom of the ramp. ?2= m/s
A hollow sphere (mass M, radius R) starts from rest at the top of a hill...
A hollow sphere (mass M, radius R) starts from rest at the top of a hill of height H. It rolls down the hill without slipping. Find an expression for the speed of the ball's center of mass once it reaches the bottom of the hill.
A 1.5 kg solid sphere (radius = 0.15 m ) is released from rest at the...
A 1.5 kg solid sphere (radius = 0.15 m ) is released from rest at the top of a ramp and allowed to roll without slipping. The ramp is 0.70 m high and 5.4 m long. When the sphere reaches the bottom of the ramp, what is its total kinetic energy? When the sphere reaches the bottom of the ramp, what is its rotational kinetic energy? When the sphere reaches the bottom of the ramp, what is its translational kinetic...
A solid cylinder of mass 1.3 kg and radius 2.0 cm starts from rest at some...
A solid cylinder of mass 1.3 kg and radius 2.0 cm starts from rest at some height above the ground and rolls down an ncline without slipping. At the bottom of the incline, its linear speed is 2.5 m/s. (a) How much is its angular speed? (b) How much is its rotational kinetic energy? The moment of inertia of a solid cyllinder is 21mR2 (c) How much is its total energy at the bottom? (d) From what height did it...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT