Question

To demonstrate circular motion, a teacher whirls vertically a bucket of water around an R radius...

To demonstrate circular motion, a teacher whirls vertically a bucket of water around an R radius circle.

  1. How would you determine the minimum angular speed so that the water stays in the bucket throughout the circular motion?
  2. Explain how come the water stays in the bucket? Give your answer according to an inertial frame of reference and a noninertial frame of reference.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A tennis ball connected to a string is spun around in a vertical, circular path at...
A tennis ball connected to a string is spun around in a vertical, circular path at a uniform speed. The ball has a mass m = 0.15 kg and moves at v = 4.89 m/s. The circular path has a radius of R = 0.94 m What is the minimum velocity so the string will not go slack as the ball moves around the circle?
A tennis ball connected to a string is spun around in a vertical, circular path at...
A tennis ball connected to a string is spun around in a vertical, circular path at a uniform speed. The ball has a mass m = 0.154 kg and moves at v = 5.16 m/s. The circular path has a radius of R = 1.01 m 1) What is the magnitude of the tension in the string when the ball is at the bottom of the circle? 2) What is the magnitude of the tension in the string when the...
Question 1 The study of Uniform Circular Motion relates to objects traveling with constant speed around...
Question 1 The study of Uniform Circular Motion relates to objects traveling with constant speed around a circle with radius, R. Since the object has a constant speed along a circular path, we can also say that A) the object has zero velocity. B) the object has a constant acceleration magnitude. C) the object has zero acceleration. D) the object has a constant velocity. E) the object has an increasing acceleration. Question 2 Uniform Circular Motion (UCM) problems are just...
Consider a satellite of mass m in a circular orbit of radius r around the Earth...
Consider a satellite of mass m in a circular orbit of radius r around the Earth of mass ME and radius RE. 1. What is the gravitational force (magnitude and direction) on the satellite from Earth? 2. If we define g(r) to be the force of gravity on a mass m at a radial distance r from the center of the Earth, divided by the mass m, then evaluate the ratio g(r)/g(RE)to see how g varies with radial distance. If...
1) A driver knows she is driving counterclockwise on a circular road. She looks down at...
1) A driver knows she is driving counterclockwise on a circular road. She looks down at her speedometer, and notices its reading is not changing with time. she has taken physics so she knows she is accelerstion in what direction ( ignorning any motion of the earth?) 2) you swing a rock, tied to a thread of length L in a horizontal circle around your head at a given constant angular frequency omega. since there is gravity the thread slopes...