Question

To demonstrate circular motion, a teacher whirls vertically a bucket of water around an R radius...

To demonstrate circular motion, a teacher whirls vertically a bucket of water around an R radius circle.

  1. How would you determine the minimum angular speed so that the water stays in the bucket throughout the circular motion?
  2. Explain how come the water stays in the bucket? Give your answer according to an inertial frame of reference and a noninertial frame of reference.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A tennis ball connected to a string is spun around in a vertical, circular path at...
A tennis ball connected to a string is spun around in a vertical, circular path at a uniform speed. The ball has a mass m = 0.15 kg and moves at v = 4.89 m/s. The circular path has a radius of R = 0.94 m What is the minimum velocity so the string will not go slack as the ball moves around the circle?
A tennis ball connected to a string is spun around in a vertical, circular path at...
A tennis ball connected to a string is spun around in a vertical, circular path at a uniform speed. The ball has a mass m = 0.154 kg and moves at v = 5.16 m/s. The circular path has a radius of R = 1.01 m 1) What is the magnitude of the tension in the string when the ball is at the bottom of the circle? 2) What is the magnitude of the tension in the string when the...
A block of mass m is moving in a circular path on a tabletop. The radius...
A block of mass m is moving in a circular path on a tabletop. The radius of the circle is r and the object's speed is v. What is the initial angular momentum of the system? What is the initial kinetic energy of the system? Suppose the mass was being pulled in circular motion by a string. The string is threaded through a small hole on the top of the table, and a person pulls on the string until it...
Question 1 The study of Uniform Circular Motion relates to objects traveling with constant speed around...
Question 1 The study of Uniform Circular Motion relates to objects traveling with constant speed around a circle with radius, R. Since the object has a constant speed along a circular path, we can also say that A) the object has zero velocity. B) the object has a constant acceleration magnitude. C) the object has zero acceleration. D) the object has a constant velocity. E) the object has an increasing acceleration. Question 2 Uniform Circular Motion (UCM) problems are just...
Consider a satellite of mass m in a circular orbit of radius r around the Earth...
Consider a satellite of mass m in a circular orbit of radius r around the Earth of mass ME and radius RE. 1. What is the gravitational force (magnitude and direction) on the satellite from Earth? 2. If we define g(r) to be the force of gravity on a mass m at a radial distance r from the center of the Earth, divided by the mass m, then evaluate the ratio g(r)/g(RE)to see how g varies with radial distance. If...
A small container of water is placed on a carousel inside a microwave oven, at a...
A small container of water is placed on a carousel inside a microwave oven, at a radius of 12.0 cm from the center. The turntable rotates steadily, turning through one revolution in each 7.25 s. What angle does the water surface make with the horizontal? Most people that have answered this question have answered it along the lines of this: "The water is traveling in a circle whose radius, r, is .12m (I like to convert all units to kg/m/sec...
1) A driver knows she is driving counterclockwise on a circular road. She looks down at...
1) A driver knows she is driving counterclockwise on a circular road. She looks down at her speedometer, and notices its reading is not changing with time. she has taken physics so she knows she is accelerstion in what direction ( ignorning any motion of the earth?) 2) you swing a rock, tied to a thread of length L in a horizontal circle around your head at a given constant angular frequency omega. since there is gravity the thread slopes...
QUESTION 1. A ferris wheel has a radius of 12 m. The center of the ferris...
QUESTION 1. A ferris wheel has a radius of 12 m. The center of the ferris wheel is 14 m above the ground. When it is rotating at full speed the ferris wheel takes 10 s to make a full turn. We can track one seat on the ferris wheel. Let’s define t = 0 to be a time when that seat is at the top of the ferris wheel while the ferris wheel is rotating at full speed. (a)...
A child pushes her friend (m = 25 kg) located at a radius r = 1.5...
A child pushes her friend (m = 25 kg) located at a radius r = 1.5 m on a merry-go-round (rmgr = 2.0 m, Imgr = 1000 kg*m2) with a constant force F = 90 N applied tangentially to the edge of the merry-go-round (i.e., the force is perpendicular to the radius). The merry-go-round resists spinning with a frictional force of f = 10 N acting at a radius of 1 m and a frictional torque τ = 15 N*m...
Delta airlines case study Global strategy. Describe the current global strategy and provide evidence about how...
Delta airlines case study Global strategy. Describe the current global strategy and provide evidence about how the firms resources incompetencies support the given pressures regarding costs and local responsiveness. Describe entry modes have they usually used, and whether they are appropriate for the given strategy. Any key issues in their global strategy? casestudy: Atlanta, June 17, 2014. Sea of Delta employees and their families swarmed between food trucks, amusement park booths, and entertainment venues that were scattered throughout what would...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT