Question

A container with impermeable, rigid and insulated walls has some mass of gas in it. The...

A container with impermeable, rigid and insulated walls has some mass of gas in it. The container is moving with a constant velocity and abruptly comes to a halt. Explain what happens to the initial kinetic energy after the container comes to a halt.

Homework Answers

Answer #1

As the container is moving witha const. velocity, the gas molecules within alos move with the same velocity.

When the container come to halt suddenly, the gas molecules within are still in motion and these molecules be hitting the walls of the container and get bounced at the walls and start moving rapidly inside.

before the contianer halted the moelcules are in equilibrium with the walls of the container and are at random movement.

Due to the incresaed velocity the tmeperature of the gas within raise. The inital KE of the container is transfered as heat energy to the gas which in turn incerases the internal energy of the gas .

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An insulated container contains a gas with some initial conditions. A lid is opened which allows...
An insulated container contains a gas with some initial conditions. A lid is opened which allows the gas to pass into another insulated container which was initially empty. The mass of the gas remains constant. A process is described as reversible if there is no change in entropy. Explain in detail if this process is reversible or not.
A gas is confined to a sub-volume V1 in an insulated rigid container. The container has...
A gas is confined to a sub-volume V1 in an insulated rigid container. The container has an adjoining sub-volume V2, initially evacuated(vacuumed), which can be connected to V1 by opening a valve. V1=V2. Suppose the valve is opened and the gas flows out of V2, filling the entire volume V1+V2. Assume the specific gas constant is R.                 a)Calculate the work done by the gas in this expansion.                 b) Calculate the change in internal energy of the gas.                ...
Consider a mole of an ideal monatomic gas, Xe, inside a container with rigid walls. The...
Consider a mole of an ideal monatomic gas, Xe, inside a container with rigid walls. The ideal gas is heated up as a flame is applied to the container’s exterior. The molar mass of Xe is 0.131 kg. The gas does not transfer any heat to the container. Answer the following questions. A.) Before the flame is lit, the pressure of the gas inside the container is 10.1x10^5 Pa and the temperature of the gas is 295 K. If at...
Air is contained in a rigid, well-insulated container of volume 3 m3. The air undergoes a...
Air is contained in a rigid, well-insulated container of volume 3 m3. The air undergoes a process from an initial state with a pressure of 200 kPa and temperature of 300 K. During the process, the air receives 720 kJ of work from a paddle wheel. Model the air as an ideal gas with constant specific heats. Evaluate the specific heats at 300 K. Neglect changes in kinetic energy and potential energy. Determine the mass of the air in kg,...
A rigid, insulated container is divided into three equal compartments and contains an ideal gas. All...
A rigid, insulated container is divided into three equal compartments and contains an ideal gas. All are at a constant temperature of 25 deg C. Compartment 1 is at a pressure of 1 bar, Compartment 2 is at a pressure of 2 bars and Compartment 3 is at a pressure of 6 bars. The partitions between compartments are removed suddenly and the gas is allowed to reach equilibrium pressure in the container. What will be temperature and pressure reached? Explain...
You have a certain mass of helium gas (He) in a rigid steel container. You add...
You have a certain mass of helium gas (He) in a rigid steel container. You add the same mass of neon gas (Ne) to this container. Which of the following best describes what happens? Assume the temperature is constant. a) The pressure in the container doubles. b) The pressure in the container more than doubles. c) The volume of the container doubles. d) The volume of the container more than doubles. e) The pressure in the container increases but does...
Ammonia is created in the Haber process in a rigid container (nitrogen gas plus hydrogen gas...
Ammonia is created in the Haber process in a rigid container (nitrogen gas plus hydrogen gas react to form ammonia gas) at a constant temperature. 5 moles of hydrogen gas are mixed with 10 moles of nitrogen gas. The initial pressure exerted on the container is 10 atm. Assuming the reaction runs to completion, what will the pressure (in atm) on the vessel be after the reaction takes place?
2:(i) A gas molecule inside a container is moving towards a wall in positive x direction,...
2:(i) A gas molecule inside a container is moving towards a wall in positive x direction, if the mass of the molecule is 9.1 x 10-11 kg and is moving with velocity of 3 m/s what will be the momentum transferred to the wall when it collides? (ii)If the collision is taking place in 1????, what will be the force generated on the wall? (iii)If the Temperature of a container is maintained to 300K, what should be the Kinetic energy...
A gas contained in a closed rigid container is heated from initial temperature and pressure of...
A gas contained in a closed rigid container is heated from initial temperature and pressure of 270C and 2 bar to a final pressure of 12 bar. Calculate final temperature, Work done, Heat transfer and change in Internal Energy. (Take Cv as 0.873 kJ/kg K. and Mass of the gas = 1kg)
Sixty pounds of carbon dioxide gas are contained in a 100-ft3 rigid, insulated vessel initially at...
Sixty pounds of carbon dioxide gas are contained in a 100-ft3 rigid, insulated vessel initially at 4 atm. An electric resistor of negligible mass transfers energy to the gas at a constant rate of 12 Btu/s for 40 seconds. Use the ideal gas model and ignore the effects of motion and gravity. Let To = 70°F, po = 1 atm. -Determine the change in exergy of the gas, in Btu.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT