Question

A gas is confined to a sub-volume V1 in an insulated rigid container. The container has...

A gas is confined to a sub-volume V1 in an insulated rigid container. The container has an adjoining sub-volume V2, initially evacuated(vacuumed), which can be connected to V1 by opening a valve. V1=V2. Suppose the valve is opened and the gas flows out of V2, filling the entire volume V1+V2. Assume the specific gas constant is R.

                a)Calculate the work done by the gas in this expansion.

                b) Calculate the change in internal energy of the gas.

                c) Calculate the change in entropy of the gas.

                d) Is the process adiabatic? Is it isothermal? Is it reversible?

The final answers to (a)-(c) are in V1 and R, not specific values.

For all equations I would really appreciate it if you could explain source of any root equations used. Thanks!

Homework Answers

Answer #1

a) Since the gas is expanding into the sub-volume V2 which is initially evacuated, it is a free expansion (external pressure = 0 as V2 is vaccum).

work done for free expansion = 0

Hence, work done by the gas in this expansion = 0

b) Since the container is insulated and rigid, there is no heat exchange.

q = 0

As it is free expansion, w = 0

Therefore,

Hence, change in internal energy of the gas = 0.

c) For an insulated system, there is no interaction between system and surrounding.

So,

For free expansion,

Since, V1 = V2

Hence, the total change in etropy is nR(ln2).

Where n is number of moles of the gas and R is gas constant.

d) The process is an isothermal process. It is isothermal free expansion.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose 4.00 mol of an ideal gas undergoes a reversible isothermal expansion from volume V1 to...
Suppose 4.00 mol of an ideal gas undergoes a reversible isothermal expansion from volume V1 to volume V2 = 8V1 at temperature T = 300 K. Find (a) the work done by the gas and (b) the entropy change of the gas. (c) If the expansion is reversible and adiabatic instead of isothermal, what is the entropy change of the gas?
A Joule expansion refers to the expansion of a gas from volume V1 to volume V2...
A Joule expansion refers to the expansion of a gas from volume V1 to volume V2 against no applied pressure, and is sometimes also called a free expansion. There is no work done, because the P of -PdV is zero. By insulating the system, this process can be done adiabatically, so there is no change in heat. For an ideal gas, the adiabatic process is also isothermal, so there is no change in thermodynamic energy, ∆U = 0 (which is...
Thermodynamics Question A Joule expansion refers to the expansion of a gas from volume V1 to...
Thermodynamics Question A Joule expansion refers to the expansion of a gas from volume V1 to volume V2against no applied pressure, and is sometimes also called a free expansion. There is no work done, because the P of -PdV is zero. By insulating the system, this process can be done adiabatically, so there is no change in heat. For an ideal gas, the adiabatic process is also isothermal, so there is no change in thermodynamic energy, ∆U = 0 (which...
An insulated container contains a gas with some initial conditions. A lid is opened which allows...
An insulated container contains a gas with some initial conditions. A lid is opened which allows the gas to pass into another insulated container which was initially empty. The mass of the gas remains constant. A process is described as reversible if there is no change in entropy. Explain in detail if this process is reversible or not.
1. One mole of an ideal monatomic gas is confined to a rigid container. When heat...
1. One mole of an ideal monatomic gas is confined to a rigid container. When heat is added reversibly to the gas, its temperature changes from 300 K to 350K. (a) How much heat is added? (b) What is the change in entropy of the gas?
A gas is confined to a cylinder which is attached to a second, evacuated, container of...
A gas is confined to a cylinder which is attached to a second, evacuated, container of the same size. When the valve is opened between the containers, the gas makes a free expansion. The entire system is well insulated so that no thermal exchange with the surroundings rakes place. If the gas is a real gas, its temperature during the free expansion would be expected to _________. If the gas is an ideal gas, its temperature during the free expansion...
A rigid adiabatic container is divided into two parts containing n1 and n2 mole of ideal...
A rigid adiabatic container is divided into two parts containing n1 and n2 mole of ideal gases respectively, by a movable and thermally conducting wall. Their pressure and volume are P1, V1 for part 1 and P2, V2 for part 2 respectively. Find the final pressure P and temperature T after the two gas reaches equilibrium. Assume the constant volume specific heats of the two gas are the same.
Air is contained in a rigid, well-insulated container of volume 3 m3. The air undergoes a...
Air is contained in a rigid, well-insulated container of volume 3 m3. The air undergoes a process from an initial state with a pressure of 200 kPa and temperature of 300 K. During the process, the air receives 720 kJ of work from a paddle wheel. Model the air as an ideal gas with constant specific heats. Evaluate the specific heats at 300 K. Neglect changes in kinetic energy and potential energy. Determine the mass of the air in kg,...
3.      Two moles of an ideal gas at an initial temperature of 400 K are confined to...
3.      Two moles of an ideal gas at an initial temperature of 400 K are confined to a volume of 40.0 L.  The gas then undergoes a free expansion to twice its initial volume.  The container in which this takes place is insulated so no heat flows in or out.  (1 Liter = 10-3 m3)  R  =  8.314 J/(mole K) a)      What is the entropy change of the gas?  (15 points) b)      What is the entropy change of the universe?  (10 points)
Calculate the total change of entropy for an ideal monatomic gas expanding from a volume V...
Calculate the total change of entropy for an ideal monatomic gas expanding from a volume V into a volume 2V via: i) Free expansion ii) Quasi-static isothermal expansion iii) Quasi-static adiabatic expansion; iv) Do the results of (iii) surprise you? Comment on what these results mean in terms of reversible and irreversible processes.