Question

A point charge of -3.00 μC is located in the center of a spherical cavity of...

A point charge of -3.00 μC is located in the center of a spherical cavity of radius 6.50 cm inside an insulating spherical charged solid. The charge density in the solid is 7.35 × 10−4 C/m3.

a) Calculate the magnitude of the electric field inside the solid at a distance of 9.50 cm from the center of the cavity. Express your answer with the appropriate units.

b) Find the direction of this electric field.

Homework Answers

Answer #1

Given

Magnitude of the charge at the center qp = -3.00 x 10-6 C

Radius of the spherical cavity r = 6.50 x 10-2 m

Density of charge ρ = 7.35 x 10-4 C/m3

Distance d = 9.50 x 10-2 m

Solution

A)

The charge of the solid enclosed by the Gaussian surface of radius D

Total charge enclosed by the Gaussian surface

Q = qs+qp

Q= 1.79 x 10-6 + (-3.00 x 10-6)

Q = -1.21 x 10-6 C

Electric flux

φ = Q/εo

E= φ/surface area

E = φ/4πd2

E = Q/4πεod2

E = kQ/d2

E = 9 x 109 x 1.21 x 10-6 / (9.5 x 10-2)2

E = 1.21 x 106 N/C

B)

Since the net charge enclosed by the Gaussian surface is negative the field will be directed towards the center of the cavity

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A point charge of -3.00 μC is located in the center of a spherical cavity of...
A point charge of -3.00 μC is located in the center of a spherical cavity of radius 6.70 cm inside an insulating spherical charged solid. The charge density in the solid is 7.35 × 10−4 C/m3. part A Calculate the magnitude of the electric field inside the solid at a distance of 9.10 cm from the center of the cavity. Express your answer with the appropriate units. part B Find the direction of this electric field.
A point charge of -3.00 μC is located in the center of a spherical cavity of...
A point charge of -3.00 μC is located in the center of a spherical cavity of radius 6.70 cm inside an insulating spherical charged solid. The charge density in the solid is 7.35 × 10−4 C/m3. a) Calculate the magnitude of the electric field inside the solid at a distance of 9.40 cm from the center of the cavity. b) Find the direction of this electric field.
A point charge of -3.00 μC is located in the center of a spherical cavity of...
A point charge of -3.00 μC is located in the center of a spherical cavity of radius 6.80 cm inside an insulating spherical charged solid. The charge density in the solid is 7.35 × 10^−4 C/m^3. Calculate the magnitude of the electric field inside the solid at a distance of 9.50 cm from the center of the cavity.
A point charge of -3.00 ?C is located in the center of a spherical cavity of...
A point charge of -3.00 ?C is located in the center of a spherical cavity of radius 6.50 cm inside an insulating spherical charged solid. The charge density in the solid is 7.35 × 10?4 C/m3. Calculate the magnitude of the electric field inside the solid at a distance of 9.30 cmfrom the center of the cavity.
A spherical cavity with a radius of 4.50 cm is located in the center of a...
A spherical cavity with a radius of 4.50 cm is located in the center of a metallic sphere with a radius of 18 cm. A point charge Q = +5.50 μC is located in the center of the cavity, while the net charge in the metallic conductor is Q '= -4.50 μC. a) Determine the load on the surface of the conductor around the cavity and on the outer surface of the conductor. b) Find the magnitude of the electric...
A point charge of 24 μC is located at the origin, which is the center of...
A point charge of 24 μC is located at the origin, which is the center of a thin spherical shell of 10 cm radius. This shell is uniformly charged with 16 μC. What is the electric field at r=5 cm and r=15? E1= ______ V/m E2= ______V/m What is the electric potential at these points? V1= ____ V V2= ____ V
A point charge of -12 μC is located at the origin, which is the center of...
A point charge of -12 μC is located at the origin, which is the center of a thin spherical shell of 10 cm radius. This shell is uniformly charged with 4 μC. What is the electric field at r=5 cm and r=15? E1 = V/m, E2= V/m. What is the electric potential at these points? V1 = V, V2= V.
A point charge of -6 μC is located at the origin, which is the center of...
A point charge of -6 μC is located at the origin, which is the center of a thin spherical shell of 10 cm radius. This shell is uniformly charged with 17 μC. What is the electric field at r=5 cm and r=15? E1=________V/m E2=________V/m What is the electric potential at these points? V1=________V V2=________V
A charge of +3.00 μC is located at the origin, and a second charge of -2.00...
A charge of +3.00 μC is located at the origin, and a second charge of -2.00 μC is located on the x-y plane at the point (40.0 cm, 20.0 cm). Determine the x-component of the electric force exerted by the -2.00 μC charge on the +3.00 μC charge. (Express your answer to three significant figures.) Determine the y-component of the electric force exerted by the -2.00 μC charge on the +3.00 μC charge. (Express your answer to three significant figures.)
A point charge of –3.00 μC is located at the origin; a point charge of 4.00...
A point charge of –3.00 μC is located at the origin; a point charge of 4.00 μC is located on the x axis at x = 0.200 m; a third point charge Q is located on the x axis at x = 0.320 m. The electric force on the 4.00 μC charge is 240 N in the +x direction. (a) Determine the charge Q. (b) With this configuration of three charges, at what location(s) is the electric field zero? (-97.2...