Question

A spherical cavity with a radius of 4.50 cm is located in the center of a...

A spherical cavity with a radius of 4.50 cm is located in the center of a metallic sphere with a radius of 18 cm. A point charge Q = +5.50 μC is located in the center of the cavity, while the net charge in the metallic conductor is Q '= -4.50 μC.

a) Determine the load on the surface of the conductor around the cavity and on the outer surface of the conductor.

b) Find the magnitude of the electric field at a point 3.00 cm from the center of the cavity.

c) Find the magnitude of the electric field at a point 6.00 cm from the center of the cavity.

d) Find the magnitude of the electric field at a point 30.0 cm from the center of the cavity.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A point charge of -3.00 μC is located in the center of a spherical cavity of...
A point charge of -3.00 μC is located in the center of a spherical cavity of radius 6.70 cm inside an insulating spherical charged solid. The charge density in the solid is 7.35 × 10−4 C/m3. a) Calculate the magnitude of the electric field inside the solid at a distance of 9.40 cm from the center of the cavity. b) Find the direction of this electric field.
A point charge of -3.00 μC is located in the center of a spherical cavity of...
A point charge of -3.00 μC is located in the center of a spherical cavity of radius 6.50 cm inside an insulating spherical charged solid. The charge density in the solid is 7.35 × 10−4 C/m3. a) Calculate the magnitude of the electric field inside the solid at a distance of 9.50 cm from the center of the cavity. Express your answer with the appropriate units. b) Find the direction of this electric field.
A point charge of -3.00 μC is located in the center of a spherical cavity of...
A point charge of -3.00 μC is located in the center of a spherical cavity of radius 6.70 cm inside an insulating spherical charged solid. The charge density in the solid is 7.35 × 10−4 C/m3. part A Calculate the magnitude of the electric field inside the solid at a distance of 9.10 cm from the center of the cavity. Express your answer with the appropriate units. part B Find the direction of this electric field.
A point charge of -3.00 μC is located in the center of a spherical cavity of...
A point charge of -3.00 μC is located in the center of a spherical cavity of radius 6.80 cm inside an insulating spherical charged solid. The charge density in the solid is 7.35 × 10^−4 C/m^3. Calculate the magnitude of the electric field inside the solid at a distance of 9.50 cm from the center of the cavity.
Suppose a conducting sphere, radius r2, has a spherical cavity of radius r1 centered at the...
Suppose a conducting sphere, radius r2, has a spherical cavity of radius r1 centered at the sphere's center. At the center of the sphere is a point charge -4Q. Assuming the conducting sphere has a net charge +Q determine the electric field,magnitude and direction, in the following situations: a) From r = 0 to r = r1. b) From r = r1 to r = r2. c) Outside of r = r2 d) find the surface charge density (charge per...
A point charge of -3.00 ?C is located in the center of a spherical cavity of...
A point charge of -3.00 ?C is located in the center of a spherical cavity of radius 6.50 cm inside an insulating spherical charged solid. The charge density in the solid is 7.35 × 10?4 C/m3. Calculate the magnitude of the electric field inside the solid at a distance of 9.30 cmfrom the center of the cavity.
A 2 cm radius conductor, a filled sphere has a total load of 8 μC. The...
A 2 cm radius conductor, a filled sphere has a total load of 8 μC. The inner radius of a conductive sphere layer centered with this sphere is 4 cm, its outer radius is 5 cm, and its net charge is -4 μC. From the center of this load distribution; a) r = 1 cm, b) r = 3 cm, c) r = 7 cm Find the size of the electric field from these three distances using Gauss's law?
A solid sphere of silver, which is a good conductor, has a spherical cavity at its...
A solid sphere of silver, which is a good conductor, has a spherical cavity at its center. There is a point charge at the center of the cavity. The silver sphere has a charge of +9.00 nC on its outer surface and a charge of -2.00 nC on the surface of the cavity. What is the value of the point charge?
A.) A point charge of +5.56 ?C is located at the center of a sphere with...
A.) A point charge of +5.56 ?C is located at the center of a sphere with a radius of 12.8 cm. Determine the electric flux through the surface of the sphere. B.) A -2.87 ?C charge is placed at the center of a conducting spherical shell, and a total charge of +8.00 ?C is placed on the shell itself. Calculate the total charge on the outer surface of the conductor. C.) A 7.59 ?C point charge is placed at the...
A solid spherical no-conductor of radius 14.5cm has a uniform charge density of p=3.70uC/m**3 (a) Find...
A solid spherical no-conductor of radius 14.5cm has a uniform charge density of p=3.70uC/m**3 (a) Find the magnitude of the electric field af a distance of 8.5 cm from the center of the sphere. B-find the electric field at a distance of 21.0 cm from the center of the sphere C-Now consider a solid sphere conductor of same radius with the same total charge as the non conductor sphere in part (a) Find the electric field at the two distance...