Question

Two speakers are separated by a distance of 2.3m. A point P is placed at 4.7m from one of the speakers...

Two speakers are separated by a distance of 2.3m. A point P is placed at 4.7m from one of the speakers so that they form a right triangle. If the speed of sound in this situation is 344m/s and the speakers are in phase, what is the lowest frequency for which the intensity at P is:

a) a maximum?
 
b) a minimum?

The 2nd harmonic of a string of length 45cm and linear mass density 2.6g/m has the same frequency as the 5th possible harmonic of a closed pipe of length 1.4m. Find the tension in the string. 
 

**Use 340 m/s for the speed of sound in air.

I tried 48.51992984693878 Newtons as an answer for the tension in the string, but that's incorrect.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two speakers are located at two on an unknown triangle with an observer located at the...
Two speakers are located at two on an unknown triangle with an observer located at the geometric center. You do not know either the sides nor angles, so you attach pipes that are open at both ends from each speaker to the center of the triangle. One pipe has a 4th harmonic standing wave frequency of 300 Hz, and one pipe has a 5th harmonic standing of 400 Hz. What frequency can the speakers be playing for the observer to...
Two loudspeakers are separated by a distance of 7.6 m. A listener sits directly in front...
Two loudspeakers are separated by a distance of 7.6 m. A listener sits directly in front of one speaker at a distance of 6.6 m so that the two speakers and the listener form a right triangle. Find the lowest frequency for which the path difference from the speakers to the listener is an odd number of half-wavelengths. Assume the speed of sound is 340 m/s. Find the second lowest frequency for which the path difference from the speakers to...
Suppose two speakers are arranged such that they emit identical sound waves, and are separated by...
Suppose two speakers are arranged such that they emit identical sound waves, and are separated by 4m. A microphone is positioned 3m above one of the speakers. If the speed of sound is 340 m/s, and both speakers start in phase, are turned on at the same time, and emit the same frequency, what is the lowest frequency such that the microphone picks up no sound? You may ignore amplitude reduction due to distance for this problem.
Two small speakers are separated by a distance of 4 cm, as shown. The speakers are...
Two small speakers are separated by a distance of 4 cm, as shown. The speakers are driven in phase with a sine wave signal of frequency 10 kHz. A small microphone is placed a distance 1.1 m away from the speakers on the axis running through the middle of the two speakers, and the microphone is then moved perpendicular to the axis. Where does the microphone record the first minimum of the interference pattern from the speakers as measured from...
Determine the fundamental frequency for a 42.5 cm long pipe, open at one end and closed...
Determine the fundamental frequency for a 42.5 cm long pipe, open at one end and closed at the other. A taut string has a mass of 2 g, a length of 4.0 m and is under a tension of 5120 N. Determine which of the harmonics of the pipe, if any, are resonant with the harmonics of the string. [The speed of sound in air is 340
12.2 A steel wire has density ? = 7800 kg/m3 , radius 0.80 mm, and length...
12.2 A steel wire has density ? = 7800 kg/m3 , radius 0.80 mm, and length 90.0 cm. A constant tension of 2.50 x 103 N is applied to the wire, and both ends are fixed. (a) What is the fundamental frequency of the wire? (b) Where should you pluck the wire to achieve the 5th harmonic, and what is its frequency? (c) What length of pipe closed at one end would have the same fundamental frequency as the wire...
You are standing at the midpoint between two speakers, a distance D away from each. The...
You are standing at the midpoint between two speakers, a distance D away from each. The speakers are playing the exact same sound of frequency 170 Hz in phase with each other. Describe what happens when you walk 1 m directly toward one of the speakers. Assume the speed of sound is 340 m/s. Also assume you can't hear any sounds except those produced by the speakers. You begin by hearing nothing, but the sound gets louder. Then it gets...
1. A cord of mass 0.65 kg is stretched between two supports 8.0 m apart. If...
1. A cord of mass 0.65 kg is stretched between two supports 8.0 m apart. If the tension in the cord is 140 N, how long will it take a pulse to travel from one support to the other? 2. A 50.0 Kg ball hangs from a steel wire 1.00 mm in diameter and 6.00 m long. What would be the speed of a wave in the steel wire? 3. The intensity of an earthquake wave passing through the earth...
a) A=7, B=2 a) Consider a pipe with a length of (A+32.5) cm. If the temperature...
a) A=7, B=2 a) Consider a pipe with a length of (A+32.5) cm. If the temperature of the air is (12.5+B) oC and the pipe is closed in one end and open in the other, what is the frequency of the third harmonic for the pipe? Post your answer in hertz (Hz) and with 3 significant figures. b) A=2, B=7 b) Consider a string with a length of (47.5 +A) cm tied at both end (like on a stringed instrument)....
A stone is dropped from the top of a cliff. The splash it makes when striking...
A stone is dropped from the top of a cliff. The splash it makes when striking the water below is heard 3.2 s later. How high is the cliff? 2. The pressure variation is a sound wave is given by Δ P = 0.0035 sin (0.38 π x – 1350 π t) Determine a. the wavelength b. the frequency c. the speed and d. the displacement amplitude of the wave. Assume the density of the medium to be 2.2 x...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT