Question

A rigid body is rotating counterclockwise about a fixed axis. Each of the following pairs of...

A rigid body is rotating counterclockwise about a fixed axis. Each of the following pairs of quantities represents an initial angular position and a final angular position of the rigid body. If the object starts from rest at the initial angular position, moves counterclockwise with constant angular acceleration, and arrives at the final angular position with the same angular speed in all three cases, for which choice is the angular acceleration the highest?

* 3 rad, 6 rad

* 1 rad, 5 rad

* -1 rad, 1 rad

Homework Answers

Answer #1

We know that angular acceleration will be highest in the case where the body covers the shortest angle since the angular speed at the final position in all three cases are same and we know that v2 = u2 +2*a*s where 'v' is the final angular speed 'u' is the initial angular speed 'a' is the angular acceleration and 's' is the angular displacement.

In our case the equation will be v2 = 2*a*s since initial angular speed is 0.

above equation can also be written as a = v2/ 2s.

Since 'v' is constant for all the cases, so angular acceleration is inversely proportional to the angular displacement.

as we can see that the angular displacement is lowest in the case of '-1 rad, 1 rad' i.e 2 rad so this the correct answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A body is initially (at t=0s) rotating about a z-axis as shown below. Its initial angular...
A body is initially (at t=0s) rotating about a z-axis as shown below. Its initial angular speed is 8.50 rad/s. It's rotation is slowing at a constant rate of 0.150 rad/s^2. a) How long does it take to stop? b) How many revolutions did it make in this time period? c) If the point shown is 17.0 cm from the z-axis, what was the initial speed at this point and what was the initial acceleration magnitude at this point?
A small object with mass 3.10 kg moves counterclockwise with constant speed 5.20 m/s in a...
A small object with mass 3.10 kg moves counterclockwise with constant speed 5.20 m/s in a circle of radius 4.50 m centered at the origin. It starts at the point with position vector (4.50 + 0 ) m. Then it undergoes an angular displacement of 8.50 rad. (e) What is its acceleration? (i + j (m/s^2))
A small object with mass 4.10 kg moves counterclockwise with constant speed 1.35 rad/s in a...
A small object with mass 4.10 kg moves counterclockwise with constant speed 1.35 rad/s in a circle of radius 3.05 m centered at the origin. It starts at the point with position vector 3.05î m. Then it undergoes an angular displacement of 8.65 rad. (a) What is its new position vector? m (b) In what quadrant is the particle located and what angle does its position vector make with the positive x-axis? Second  at ??° (c) What is its velocity? m/s...
A cylinder rotating about its axis with a constant angular acceleration of 1.6 rad/s^2 starts from...
A cylinder rotating about its axis with a constant angular acceleration of 1.6 rad/s^2 starts from rest at t=0. At the instant when it has turned through 0.40 radian, find the magnitude of the tangential velocity at point on the rim (radius=0.15 m)?
A body of mass m = 18.6 kg is attached to a spring with force constant...
A body of mass m = 18.6 kg is attached to a spring with force constant k = 14.3 N/m. This body, which is initially at its equilibrium position, is given an initial velocity of v = 7.8 m/s. What is the speed of this body when it is at position x = - 2.0 m? An object starting at rest rotates with constant angular acceleration α = 0.3 rad/s2 . What is the angular displacement after t = 3.0...
A clutch plate initial consists of wheel A rotating about its body axis through the center...
A clutch plate initial consists of wheel A rotating about its body axis through the center of the wheel. Wheel B is initially at rest. Wheel A and B are then brought together so that they may be considered a single composite wheel turning with the same angular velocity. This causes the rotation to slow. We wish to find the final angular velocity given the following conditions: Mass of wheel A is 10 kg. Its radius is 3 meters. The...
1. A disk-shaped wheel, whose mass is 1.75kg and radius 0.6m, is rotating at an initial...
1. A disk-shaped wheel, whose mass is 1.75kg and radius 0.6m, is rotating at an initial angular speed of 30 rad / sec. It is brought to rest with constant angular acceleration. If the wheel spins 200 rad before stopping: a) Determine the angular acceleration of the wheel. b) The time it takes you to stop. c) The initial linear speed of a point on the edge of the wheel. d) The initial tangential acceleration of a point on the...
A discus thrower (arm length 0.9 m) starts from rest and begins to rotate counterclockwise with...
A discus thrower (arm length 0.9 m) starts from rest and begins to rotate counterclockwise with a constant angular acceleration of +2.7 rad/s2. (a) How many radians of angle does it take for the discus thrower's angular velocity to reach +7.0 rad/s? rads (b) How long does this take? seconds At this time (from part b), please find the following quantities: (c) the linear speed of the discus: m/s (d) the size of the discus's tangential acceleration: m/s2 the size...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.200 rev/s . The magnitude of the angular acceleration is 0.895 rev/s2 . Both the the angular velocity and angular acceleration are directed counterclockwise. The electric ceiling fan blades form a circle of diameter 0.780 m . (a) Compute the fan's angular velocity magnitude after time 0.209 s has passed. (b)Through how many revolutions has the blade turned in the time interval 0.209...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.250 rev/s. The magnitude of the angular acceleration is 0.912 rev/s2 . Both the the angular velocity and angular accleration are directed counterclockwise. The electric ceiling fan blades form a circle of diameter 0.750 m. a. Compute the fan's angular velocity magnitude after time 0.210 s has passed. b.Through how many revolutions has the blade turned in the time interval 0.210 s from...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT