Question

7. A hoop, a disk, and a ball roll down a hill. If the hoop is...

7. A hoop, a disk, and a ball roll down a hill. If the hoop is traveling at speed v when it reaches the bottom, how fast are the other two traveling? (While it may not seem so at first, you do in fact have enough information to solve this problem)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two objects roll down a hill: a hoop and a solid cylinder. The hill has an...
Two objects roll down a hill: a hoop and a solid cylinder. The hill has an elevation change of 1.4-m and each object has the same diameter (0.55-m) and mass. Calculate the velocity of each object at the bottom of the hill and rank them according to their speeds. [Hint: When an object is rolling, the angular speed and the velocity of the center of mass are related by , where is the radius of the object.] Veyi= 4.3 m/s...
A hoop and a disk, both of 0.88- m radius and 4.0- kg mass, are released...
A hoop and a disk, both of 0.88- m radius and 4.0- kg mass, are released from the top of an inclined plane 3.3 m high and 8.1 m long. What is the speed of each when it reaches the bottom? Assume that they both roll without slipping. What is the speed of the hoop? What is the speed of the disk?
A hoop and a disk, both of 0.50- m radius and 4.0- kg mass, are released...
A hoop and a disk, both of 0.50- m radius and 4.0- kg mass, are released from the top of an inclined plane 2.9 m high and 8.7 m long. What is the speed of each when it reaches the bottom? Assume that they both roll without slipping. What is the speed of the hoop? What is the speed of the disk?
A hoop and a disk, both of 0.40- m radius and 3.0- kg mass, are released...
A hoop and a disk, both of 0.40- m radius and 3.0- kg mass, are released from the top of an inclined plane 2.7 m high and 9.0 m long. What is the speed of each when it reaches the bottom? Assume that they both roll without slipping. What is the speed of the hoop? What is the speed of the disk?
A soccer player kicks a 0.43 kg soccer ball down a smooth hill 18 m high...
A soccer player kicks a 0.43 kg soccer ball down a smooth hill 18 m high with an initial speed of 7.4 m/s. a) Calculate the ball’s speed as it reaches the bottom of the hill. b) The soccer player stands at the same point on the hill and gives the ball a kick up the hill at 4.2 m/s. The ball moves up the hill, comes to rest, and rolls back down the hill. Determine the ball’s speed as...
A bicycle and its owner roll down a hill dropping in altitude 4.0 m, ending up...
A bicycle and its owner roll down a hill dropping in altitude 4.0 m, ending up on level ground. The mass of the cycle plus bicyclist is 70.0 kg. We ignore the effect of friction in the first two questions. A. If the bicycle starts initially at rest, find the speed of the bicycle when it reaches level ground. B. If instead the bicycle starts with an initial speed of 4.0 m/s, find the speed of the bicycle when it...
A group of kids are racing hula hoops down a hill that is 0.8 m high....
A group of kids are racing hula hoops down a hill that is 0.8 m high. One hoop is .7kg with a radius of 67 cm and the other hoop is .5kg with a radius of 43cm. If both hoops are initially traveling at 1.2 m/s right after they are pushed off the top of the hill, what hoop will reach the bottom first use the conservation of energy to support your answer. What is the change in angular momentum...
A 6.76 kg bowling ball is moving down a frictionless and bumpy hill. Its initial speed...
A 6.76 kg bowling ball is moving down a frictionless and bumpy hill. Its initial speed is 1.48 m/s. 1) What is the magnitude of its initial momentum? (in units of kg m/s). True or false 2) As the above ball frictionlessly moves down the hill, its potential energy and kinetic energy increase. 3) Its initial kinetic energy is: A) 6.76 J, B) 7.40 J, C) 20.0 J, D) 66.2 J, or E) none of these 4) The initial elevation...
The sturdy uniform sphere rolled down the 35 m high hill. The ball rolls without slipping,...
The sturdy uniform sphere rolled down the 35 m high hill. The ball rolls without slipping, and there is no external force. What is the linear velocity of the sphere when it reaches the bottom of the mountain?
A box is sliding down a spherical hill. The hill radius is R=1 km. The ball...
A box is sliding down a spherical hill. The hill radius is R=1 km. The ball starts with zero initial velocity. There is friction between the box and the hill surface The box slips off the hill when the line connecting center of the Hill to its position is at angle θ=10 degrees. What is the speed of the box at this point right before it detaches from Hill? How much energy is lost due to friction while the box...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT