Question

At a certain location there is a constant horizontal magnetic field pointing to the east. A...

At a certain location there is a constant horizontal magnetic field pointing to the east. A square loop of wire is placed in this field. At time A the bottom of the loop is resting on the floor (which is insulating), and the plane of the square loop is vertical and perpendicular to the magnetic field. The loop tips over and at time B it is flat on the floor. For this situation...

A) Before the loop starts to tip over, the induced current is flowing southward through the bottom side of the square

B) The magnetic flux is greatest before the loop tips over

C) Current is induced to flow in the loop because the magnetic field is changing

D) While the loop is tipping over, there is induced current flowing through the loop

E) The induced current is greatest just before the loop starts to tip

Homework Answers

Answer #1

Current flows due to induced emf which is further due to changing magnetic flux. Magnetic flux depends on the magnetic field, the area of the loop and the angle between the two. Here the magnetic flux nd areaa of magnetic field is constant. The only thing that varies is the angle. Before the loop starts to tip over, no current will flow as flux at that instant is constant. Hence A and E are incorrect. C is also incorrect as the current is induced due to change in the angle between B and Area and B is constant. B is correct as in the initial position, maximum magnetic field lines cut through the area. We can also understand it mathematically. The magnetic flux is proportional to the Cos (Cosine) of the angle between B and A. In the initial position the angle is zero. As, Cos(0o) = maximum, magnetic flux is maximum. Lastly, D is also correct as already discussed.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
At a certain location there is a constant horizontal magnetic field pointing to the east. A...
At a certain location there is a constant horizontal magnetic field pointing to the east. A square loop of wire is placed in this field. At time A the bottom of the loop is resting on the floor (which is insulating), and the plane of the square loop is vertical and perpendicular to the magnetic field. The loop tips over and at time B it is flat on the floor. For this situation... A) Before the loop starts to tip...
1. The magnetic field, pointing in the opposite direction as the area vector of a 0.02m^2...
1. The magnetic field, pointing in the opposite direction as the area vector of a 0.02m^2 loop, has an instantaneous value of 7T. What is the magnetic flux through the loop in SI units? Hint: Be careful with signs. 2. The magnetic field, pointing perpendicular to the area vector of a 0.02m^2 loop, has an instantaneous value of 7T. What is the magnetic flux through the loop in SI units? 3. The magnetic field, pointing in the same direction as...
A loop of wire sits in a uniform magnetic field, everywhere pointing toward you. Due to...
A loop of wire sits in a uniform magnetic field, everywhere pointing toward you. Due to a changing magnetic flux through the loop, an induced current flows in the wire, clockwise as shown. The area of the loop is J. 1.63 m2 , and the magnetic field initially has magnitude K. 0.61 T. (a) Suppose that, over a time period of L. 1.47 s, the magnetic field changes from its initial value, producing an average induced voltage of M. 8.7...
6: A single-turn circular loop of wire rests flat on this page. A magnetic field is...
6: A single-turn circular loop of wire rests flat on this page. A magnetic field is directed perpendicular to this page pointing outwards (towards you). When the magnetic field strength increases from 3.2 T to 6.5 T in 0.026 seconds, a 1 V emf is induced in the coil. a) Calculate the radius of the loop. b) State the direction of the induced current and briefly explain how you arrived at your answer.
A circular loop with 50 coils is pulled (to the right) from an external magnetic field...
A circular loop with 50 coils is pulled (to the right) from an external magnetic field of 0.8 T into the page. At t=0 the right edge of the loop is at the right edge of the magnetic field. After 0.250 seconds the loop has moved completely out of the magnetic field. Diameter of the coil is 10 cm Find the rate of change in flux through one loop as the loop if the loop is pulled out of the...
An 8.0cm× 8.0 cm square loop is halfway into a magnetic field that is perpendicular to...
An 8.0cm× 8.0 cm square loop is halfway into a magnetic field that is perpendicular to the plane of the loop. The loop's mass is 10 g and its resistance is 0.040 Ω . A switch is closed at t =0s, causing the magnetic field to increase from 0 to 1.0 T in 0.010 s. a) What is the induced current in the square loop? bWith what speed is the loop "kicked" away from the magnetic field? Hint: What is...
A steady current, I, flows along a circular loop generating a uniform magnetic field of 0.1T...
A steady current, I, flows along a circular loop generating a uniform magnetic field of 0.1T perpendicular to the plane of the loop, and a magnetic flux through the loop of 10-4 weber. Within a short time interval, the current and the magnetic flux both drop to zero. Based on the given information, find: (a) The initial current in the loop, (b) the inductance of the loop, and (c) the potential energy associated with the initial conditions of steady current....
A magnetic field, strength 3T, has a direction out of the page. A loop of wire...
A magnetic field, strength 3T, has a direction out of the page. A loop of wire sits in the field and on the plane of the page (area vector of loop is out of page). The loop is much smaller than the extent of the field. The magnetic field starts to slowly change at a rate of -0.0001T/s. Looking down on the loop, which statement is correct? A. Magnetic flux out of page decreasing; anti-clockwise current induced in loop B....
A time-varying magnetic field is perpendicular to the plane of a circular loop of diameter 10...
A time-varying magnetic field is perpendicular to the plane of a circular loop of diameter 10 cm made with wire of diameter 3.4 mm and resistivity 2.07 × 10-8?·m. The magnetic field increases as a function of time, with magnitude B = (0.79 t) T/s a) What is the magnitude of the emf induced in the loop? b) What is the value of the current through the loop? c) At what rate does energy appear as thermal energy in the...
A circular conducting loop of radius 31.0 cm is located in a region of homogeneous magnetic...
A circular conducting loop of radius 31.0 cm is located in a region of homogeneous magnetic field of magnitude 0.300 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 109 Ω. The magnetic field is now increased at a constant rate by a factor of 2.40 in 15.0s. 1) Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing. 2) Calculate the magnitude of...