Question

6: A single-turn circular loop of wire rests flat on this page. A magnetic field is...

6: A single-turn circular loop of wire rests flat on this page. A magnetic field is directed perpendicular to this page pointing outwards (towards you). When the magnetic field strength increases from 3.2 T to 6.5 T in 0.026 seconds, a 1 V emf is induced in the coil.

a) Calculate the radius of the loop.

b) State the direction of the induced current and briefly explain how you arrived at your answer.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of...
A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of the field is changing, so that an emf of 0.23 V and a current of 2.4 A are induced in the coil. The wire is then re-formed into a single-turn square coil, which is used in the same magnetic field (again perpendicular to the plane of the coil and with a magnitude changing at the same rate). What (a) emf and (b) current are...
9. A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude...
9. A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of the field is changing, so that an emf of 0.77 V and a current of 2.7 A are induced in the coil. The wire is then re-formed into a single-turn square coil, which is used in the same magnetic field (again perpendicular to the plane of the coil and with a magnitude changing at the same rate). What emf is induced in the...
A magnetic field, strength 3T, has a direction out of the page. A loop of wire...
A magnetic field, strength 3T, has a direction out of the page. A loop of wire sits in the field and on the plane of the page (area vector of loop is out of page). The loop is much smaller than the extent of the field. The magnetic field starts to slowly change at a rate of -0.0001T/s. Looking down on the loop, which statement is correct? A. Magnetic flux out of page decreasing; anti-clockwise current induced in loop B....
A 37-turn circular coil of radius 4.60 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to...
A 37-turn circular coil of radius 4.60 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil at t = 4.20 s.
PLEASE SHOW ALL WORK! A 50-turn coil of wire lies in a magnetic field directed into...
PLEASE SHOW ALL WORK! A 50-turn coil of wire lies in a magnetic field directed into the page. The coil has an initial area of 0.325 cm^2 a) If the magnetic field strength is 1.50 T, what is the magnetic flux through the coil? b) Suppose we now crush the coil so that its area is very small; i.e., effectively zero. If this process takes 0.175 s, what is the average induced emf?
A circular loop with 50 coils is pulled (to the right) from an external magnetic field...
A circular loop with 50 coils is pulled (to the right) from an external magnetic field of 0.8 T into the page. At t=0 the right edge of the loop is at the right edge of the magnetic field. After 0.250 seconds the loop has moved completely out of the magnetic field. Diameter of the coil is 10 cm Find the rate of change in flux through one loop as the loop if the loop is pulled out of the...
A circular loop in the plane of the paper lies in a 0.78 T magnetic field...
A circular loop in the plane of the paper lies in a 0.78 T magnetic field pointing into the paper. A) What is the magnitude of the average induced emf? Answer in V. B) If the coil resistance is 4.3 ohm , what is the average induced current? Answer in A
A 149-turn circular coil of radius 2.67 cm is immersed in a uniform magnetic field that...
A 149-turn circular coil of radius 2.67 cm is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. During 0.153 s the magnetic field strength increases from 51.1 mT to 99.3 mT. Find the magnitude of the average EMF, in millivolts, that is induced in the coil during this time interval.
A 29-turn circular coil of radius 3.40 cm and resistance 1.00 Ω is placed in a...
A 29-turn circular coil of radius 3.40 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil at t = 4.60 s.
A 133 turn circular coil of radius 2.77 cm is immersed in a uniform magnetic field...
A 133 turn circular coil of radius 2.77 cm is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. Over an interval of 0.121 s, the magnetic field strength increases from 55.7 mT to 95.9 mT. Find the magnitude of the average emf avgEavg induced in the coil during this time interval, in millivolts. avg=Eavg= ?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT