Question

Q2. Lenses and the Eye An object O is positioned 3.5 m from a lens of...

Q2. Lenses and the Eye An object O is positioned 3.5 m from a lens of focal length f = -1.5 m as shown:

  1. Copy the diagram and draw in:
    1. the path of a parallel ray from the top of the object through the lens;
    2. the path of a ray through the centre of the lens;
    3. and hence the location of the image.
  2. Calculate the image distance di from the lens. Mark this distance on the diagram in a).
  3. A person with myopia wears such lenses to correct for their vision of objects in the distance. The lenses are positioned 18 mm from the eyes.
    1. What is the far point for the eyes?
    2. Find the focal length of the lens inside the eye (fe) given that the distance between the lens and the retina is 21.1 mm. (Assume that the eye lens can be modelled as a thin convergent lens).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The uncorrected eye. For the following questions, assume that the distance between the eye lens and...
The uncorrected eye. For the following questions, assume that the distance between the eye lens and the retina is 1.70 cm. In other words, since the image is always formed on the retina, the distance between the lens and the image is always 1.70 cm. Also note that, as is seen in the ray diagram, since the eye lens is converging and the image is on the opposite side of the lens compared to the object, the image is always...
Contact lenses are placed right on the eyeball, so the distance from the eye to an...
Contact lenses are placed right on the eyeball, so the distance from the eye to an object (or image) is the same as the distance from the lens to that object (or image). A certain person can see distant objects well, but his near point is 50.0 cm from his eyes instead of the usual 25.0 cm . Part A Is this person nearsighted or farsighted? Is this person nearsighted or farsighted? This person is nearsighted. This person is farsighted....
2. Correcting vision: quantitative. Corrective lenses work because the lens bends light such that it, combined...
2. Correcting vision: quantitative. Corrective lenses work because the lens bends light such that it, combined with the eye itself, light forms a clear image on the retina. Another way to think about this is that the corrective lens (glasses) form an image of the object at a location where the eye can see clearly without corrective lenses. For a nearsighted person viewing an object very far away (object at infinity), the lens corrective lens creates an image at the...
A. The human eye 1. Whenever a normal eye forms an image, the image distance will...
A. The human eye 1. Whenever a normal eye forms an image, the image distance will always equal the distance from the cornea and eye lens to the retina (~25 mm), regardless of how far away the object is located. Explain why the image distance cannot change. 2. If the image distance must change, then what intrinsic property of the eye lens must change in order for the eye to focus on objects at different distances? Hint: read the Introduction....
The focal length of the objective lens in a microscope is 0.270 cm, and an object...
The focal length of the objective lens in a microscope is 0.270 cm, and an object is placed 0.275 cm from the objective. a. How far from the objective lens will the objective image be formed? b. If the image of this object is viewed with the eyepiece adjusted for minimum eyestrain (image at the far point of the eye) for a person with normal vision. What is the needed focal length of the eyepiece lens if the distance between...
1) The distance from the lens to the retina is 3.1 cm, what is the effective...
1) The distance from the lens to the retina is 3.1 cm, what is the effective focal length of the lens when staring at an object infinitely far away? 2) An object is moved to 40cm from the eye. What must the focal length of the eye be to focus the image on the retina? 3) In the near sighted eye, images focus before hitting the retina. Suppose the focal length of the lens is 1.9 cm, while the distance...
A person is farsighted and has near point of 50 cm. Retina is at a distance...
A person is farsighted and has near point of 50 cm. Retina is at a distance L = 1.7 cm. When wearing contact lenses and reading a book 30 cm in front of the eye, what is the object distance for the lenses? What is the desired image distance? Is the magnitude of the image distance a minimum, maximum, or the only acceptable image distance? Find the focal length and refractive power of the contact lens that will fix this...
Darcy suffers from farsightedness equally severely in both eyes. The focal length of either of Darcy's...
Darcy suffers from farsightedness equally severely in both eyes. The focal length of either of Darcy's eyes is 19.0 mm in its most accommodated state (i.e, when the eye is focusing on the closest object that it can clearly see) What lens strength (a.k.a., lens power) of contact lenses should be prescribed to correct the farsightedness in Darcy's eyes? (Assume the lens-to retina distance of Darcy's eyes is 2.00 cm, and the contact lenses are placed a negligibly small distance...
The tube length in compound microscope is 26 cm. The focal length of the objective lens...
The tube length in compound microscope is 26 cm. The focal length of the objective lens is 2 cm. The clearest image is formed when an object of height 1 mm is placed at a distance of 2.18 cm from the objective lens. Determine: 1. The position of the intermediate image, 2. the focal length of the eye piece, that will place the final image at the near-point, 3. the total magnification of the microscope and the height of the...
1. Consider a 1 mm bug located at your nearpoint, 25 cm away from your left...
1. Consider a 1 mm bug located at your nearpoint, 25 cm away from your left eye. 1a). Sketch the object, lens and image positions if the object is 1 mm in size and the image distance between the retina and lens in your eye is 1 cm. 1b). What focal length for your eye lens is needed to focus the bug’s image onto your retina? 1c). If you insert a convex magnifying glass 6 cm away from the bug,...