Question

1) The distance from the lens to the retina is 3.1 cm, what is the effective...

1) The distance from the lens to the retina is 3.1 cm, what is the effective focal length of the lens when staring at an object infinitely far away?

2) An object is moved to 40cm from the eye. What must the focal length of the eye be to focus the image on the retina?

3) In the near sighted eye, images focus before hitting the retina. Suppose the focal length of the lens is 1.9 cm, while the distance to the retina is still 3.1cm. What type of lens (converging or diverging) and what focal length should be used to correct this? The lens will be placed 1cm in front of the eye and we wish to see an object infinitely far away.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A converging lens and a diverging lens, separated by a distance of 30.0 cm, are used...
A converging lens and a diverging lens, separated by a distance of 30.0 cm, are used in combination. The converging lens has a focal length of 15.2 cm. The diverging lens is of unknown focal length. An object is placed 19.3 cm in front of the converging lens; the final image is virtual and is formed 12.0 cm in front of the diverging lens. What is the focal length of the diverging lens?
The uncorrected eye. For the following questions, assume that the distance between the eye lens and...
The uncorrected eye. For the following questions, assume that the distance between the eye lens and the retina is 1.70 cm. In other words, since the image is always formed on the retina, the distance between the lens and the image is always 1.70 cm. Also note that, as is seen in the ray diagram, since the eye lens is converging and the image is on the opposite side of the lens compared to the object, the image is always...
1. Consider a 1 mm bug located at your nearpoint, 25 cm away from your left...
1. Consider a 1 mm bug located at your nearpoint, 25 cm away from your left eye. 1a). Sketch the object, lens and image positions if the object is 1 mm in size and the image distance between the retina and lens in your eye is 1 cm. 1b). What focal length for your eye lens is needed to focus the bug’s image onto your retina? 1c). If you insert a convex magnifying glass 6 cm away from the bug,...
A converging lens with a focal length of 20 cm and a diverging lens with a...
A converging lens with a focal length of 20 cm and a diverging lens with a focal length of -34 cm are 74.0 cm apart. A 2.6-cm-tall object is 40 cm in front of the converging lens. 1. Calculate the distance between image and diverging lens. 2. Calculate the image height.
2. Correcting vision: quantitative. Corrective lenses work because the lens bends light such that it, combined...
2. Correcting vision: quantitative. Corrective lenses work because the lens bends light such that it, combined with the eye itself, light forms a clear image on the retina. Another way to think about this is that the corrective lens (glasses) form an image of the object at a location where the eye can see clearly without corrective lenses. For a nearsighted person viewing an object very far away (object at infinity), the lens corrective lens creates an image at the...
A converging lens with a focal length of 60 cm and a diverging lens with a...
A converging lens with a focal length of 60 cm and a diverging lens with a focal length of -70 cm are 310 cm apart. A 2.7-cm-tall object is 80 cm in front of the converging lens. Calculate the distance between the final image and the diverging lens. Express your answer to two significant figures and include the appropriate units. Calculate the image height. Express your answer to two significant figures and include the appropriate units.
A) An object is placed 26 cm in front of a converging lens of focal length...
A) An object is placed 26 cm in front of a converging lens of focal length 5 cm. Another converging lens of focal length 10 cm is placed 20 cm behind the first lens. 1) Find the position of the final image with respect to the second lens.  ____cm 2) Find the magnification of the final image. _____ B) A diverging lens of focal length −12cm projects the image of an object onto a wall. What is the object distance if...
An object i 5 cm in front of diverging lens (focal length 10 cm). 20 cm...
An object i 5 cm in front of diverging lens (focal length 10 cm). 20 cm behind diverging lens is converging lens (focal length 20 cm). where is the image? is it real or virtual?
A person is farsighted and has near point of 50 cm. Retina is at a distance...
A person is farsighted and has near point of 50 cm. Retina is at a distance L = 1.7 cm. When wearing contact lenses and reading a book 30 cm in front of the eye, what is the object distance for the lenses? What is the desired image distance? Is the magnitude of the image distance a minimum, maximum, or the only acceptable image distance? Find the focal length and refractive power of the contact lens that will fix this...
The distance from the eye lens (i.e. cornea-lens system) to the retina of a particular eye...
The distance from the eye lens (i.e. cornea-lens system) to the retina of a particular eye is 2.02 cm. The power of the eye lens when it is relaxed is 54.1 D. (a) Calculate the far point of the eye. (m) (b) If a corrective lens is to be placed 1.78 cm from the eye, calculate the power of the corrective lens that will allow the eye to focus on distant objects. (D)