Question

A ball of mass m falls from rest from a height of y1, collides with the...

A ball of mass m falls from rest from a height of y1, collides with the ground and bounces back up to y2. The collision time with the ground is ?t. A) Determine the momentum of the ball immediately before the collision with the ground. B) Determine the momentum of the ball immediately after the collision with the ground. C) Determine the average force exerted on the ball during the collision. Now let: m = 0.080 kg y1 = 3.0 m y2 = 2.0 m ?t = 0.005 s. D) Determine the numerical value of the impulse of the ground on the ball during the collision. E) Determine the numerical value of the change in the kinetic energy during the collision

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A ball is dropped from rest from the top of a 6.10 m-y’all building, falls straight...
A ball is dropped from rest from the top of a 6.10 m-y’all building, falls straight downward, collides inelasrically with the ground, and bounces back. The call loses 10.0% of its kinetic energy every time it collides with the ground. How many bounces can the ball make and still reach a windowsill that is 2.44 m above the ground?
A ball of mass 2.25 kg is released from rest at height 5.29 m above the...
A ball of mass 2.25 kg is released from rest at height 5.29 m above the floor. It falls, hits the ground, and rebounds to height 3.19 m above the floor. Assume none of the losses are due to air friction. Find the impulse, in N-s, exerted by the floor on the ball. The sign of your answer will give the direction of the impulse.
A ball with mass of 0.050 kg is dropped from a height of  h1 = 1 .5...
A ball with mass of 0.050 kg is dropped from a height of  h1 = 1 .5 m. It collides with the floor, then bounces up to a height of h2 = 1.0 m. The Collison takes 0.015 s. Use part e to Calculate impulse ( J) ? Write the formula first . Use part f to Calculate the average force acting ( F) on the ball by the floor during the collision? *Write the formula Calculate the change in the...
A Wilson volleyball falls vertically from the initial height of 2.1 m with no initial velocity...
A Wilson volleyball falls vertically from the initial height of 2.1 m with no initial velocity to the floor and bounces vertically, reaching the highest point 1.7 m from the floor as illustrated. Take the origin of the potential energy of the ball to be that on the floor. The mass of the ball is 0.120 kg. 1)What is the velocity of the ball just before hitting the floor? 2)What is the magnitude of the impulse on the ball from...
1. a tennis ball is dropped from a height of 2 m and it rebounds 95...
1. a tennis ball is dropped from a height of 2 m and it rebounds 95 cm. use g=10 m/s^2, and the tennis ball weights .058 kg. a) find the change of momentum when the ball is at a height of 1.5 m downward and at 0.5 m downward. which i got -3.14 kg m/s for the 1.5 m, and -0.18 kg m/s, and then what is the impulse exerted on the object during that change of momentum? b) compute...
A ball of mass 0.250 kg that is moving with a speed of 5.5 m/s collides...
A ball of mass 0.250 kg that is moving with a speed of 5.5 m/s collides head-on and elastically with another ball initially at rest. Immediately after the collision, the incoming ball bounces backward with a speed of 3.1 m/s . Calculate the velocity of the target ball after the collision. Calculate the mass of the target ball.
A ball of mass 0.310 kg that is moving with a speed of 5.7 m/s collides...
A ball of mass 0.310 kg that is moving with a speed of 5.7 m/s collides head-on and elastically with another ball initially at rest. Immediately after the collision, the incoming ball bounces backward with a speed of 3.1 m/s . 1. Calculate the velocity of the target ball after the collision. 2. Calculate the mass of the target ball.
A ball of mass 0.265 kg that is moving with a speed of 5.1 m/s collides...
A ball of mass 0.265 kg that is moving with a speed of 5.1 m/s collides head-on and elastically with another ball initially at rest. Immediately after the collision, the incoming ball bounces backward with a speed of 3.5 m/s . Part A: Calculate the velocity of the target ball after the collision. Part B: Calculate the mass of the target ball.
A ball with mass of 0.025 kg is thrown horizontally with velocity of 1.5 m/s toward...
A ball with mass of 0.025 kg is thrown horizontally with velocity of 1.5 m/s toward a wall in positive X direction. It collides with the wall, then bounces back to the left with velocity of 1.0 m. The Collison takes 0.015s. What is the total initial momentum? b) What is the total final momentum? c)What is change in momentum? d)What is the impulse? e) What is the average force acting on the wall by the ball during the collision?...
A 2.33 kg ball is dropped from a height of 3 m.  The ball then bounces back...
A 2.33 kg ball is dropped from a height of 3 m.  The ball then bounces back upward a distance of 2.2 m. How much energy was lost in the collision with the ground? 50.2 J 18.3 J 68.5 J 118.7 J A 2.33 kg ball is dropped from a height of 3 m.  The ball then bounces back upward a distance of 2.2 m. How much momentum does the ball have immediately after bouncing off the ground? 5.13 kg m/s 21.6...