Question

An air-track cart with mass *m*1=0.29kg and initial speed
*v*0=0.80m/s collides with and sticks to a second cart that
is at rest initially.

If the mass of the second cart is *m*2=0.51kg, how much
kinetic energy is lost as a result of the collision?

Answer #1

kinetic energy is lost as a result of the collision = 59.16mJ

An air-track cart with mass m1=0.34kg and initial speed
v0=0.80m/s collides with and sticks to a second cart that is at
rest initially.
Part A If the mass of the second cart is m2=0.54kg, how much
kinetic energy is lost as a result of the collision? Express your
answer to two significant figures and include appropriate
units.

An air-track cart with mass m1=0.32kg and initial speed
v0=0.75m/s collides with and sticks to a second cart that is at
rest initially. If the mass of the second cart is m2=0.43kg, how
much kinetic energy is lost as a result of the collision?

A car, mass m1 is moving to the right on a frictionless air
track. It collides with a second car, mass m2, which is initially
at rest. Which of the following statements are true? (If A and E
are true, and the others are not, enter TFFFT).
A) If car 1 is much lighter than m2, and the collision is
perfectly elastic, car 1 will continue heading to the right with
nearly its original speed after the collision.
B) If...

A car, mass m1 is moving to the right on a
frictionless air track. It collides with a second car, mass
m2, which is initially at rest. Which of the following
statements are true? (If A and E are true, and the others are not,
enter TFFFT).
A) If car 1 is much lighter than m2, and the collision is perfectly
elastic, car 1 will continue heading to the right with nearly its
original speed after the collision.
B) If...

2 air carts collide and stick together. cart one is M1
= 0.755 kg and initial speed of 0.435 m/s the cart to right is
initially at rest with mass m2= 0.300kg.
a.find the velocity of the center of mass before the carts Collide
and stick together
b. find the velocity of the center of mass after the carts Collide
and stick together
c. find the kinetic energy of the system before and after the
Collision

Block 1, of mass m1 = 12.3 kg , moves along a frictionless air
track with speed v1 = 13.0 m/s . It collides with block 2, of mass
m2 = 39.0 kg , which was initially at rest. The blocks stick
together after the collision. Find the magnitude pi of the total
initial momentum of the two-block system. Find vf, the magnitude of
the final velocity of the two-block system. What is the change
ΔK=Kfinal−Kinitial in the two-block system's...

Block 1, of mass m1 = 1.70 kg , moves along a frictionless air
track with speed v1 = 29.0 m/s . It collides with block 2, of mass
m2 = 59.0 kg , which was initially at rest. The blocks stick
together after the collision. (Figure 1)
Find the magnitude pi of the total initial momentum of
the two-block system.
Find vf, the magnitude of the final velocity of the
two-block system.
What is the change ΔK=Kfinal−Kinitial
in the...

Block 1, of mass m1 = 5.30 kg , moves along a frictionless air
track with speed v1 = 31.0 m/s . It collides with block 2, of mass
m2 = 51.0 kg , which was initially at rest. The blocks stick
together after the collision.
A.Find the magnitude pi of the total initial momentum of the
two-block system.
B.Find vf, the magnitude of the final velocity of the two-block
system.
C. What is the change ΔK=Kfinal−Kinitial in the two-block...

Cart 1, with m1= 5.8 kg, is moving on a frictionless linear air
track at an initial speed of 1.8 m/s. It undergoes an elastic
collision with an initially stationary cart 2, with m2, an unknown
mass. After the collision, cart 1 continues in its original
direction at 0.7 m/s. 1) The horizontal component of the momentum
is conserved for cart 1. cart 2. the system of cart 1 and cart 2.
Momentum is not conserved for any of these...

Block 1, of mass m1 = 9.70 kg , moves along a frictionless air
track with speed v1 = 27.0 m/s . It collides with block 2, of mass
m2 = 55.0 kg , which was initially at rest. The blocks stick
together after the collision. (Figure 1)
Part A: Find the magnitude pi of the total initial momentum of
the two-block system.
Part B: Find vf, the magnitude of the final velocity of the
two-block system.
Part C: What...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 39 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 3 hours ago

asked 3 hours ago

asked 3 hours ago

asked 3 hours ago

asked 3 hours ago