Question

Block 1, of mass m1 = 1.70 kg , moves along a frictionless air track with...

Block 1, of mass m1 = 1.70 kg , moves along a frictionless air track with speed v1 = 29.0 m/s . It collides with block 2, of mass m2 = 59.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1)

Find the magnitude pi of the total initial momentum of the two-block system.

Find vf, the magnitude of the final velocity of the two-block system.

What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic energy due to the collision?

Homework Answers

Answer #1

Mass of block 1 = m1 = 1.7 kg

Mass of block 2 = m2 = 59 kg

Velocity of block 1 before the collision = V1 = 29 m/s

Velocity of block 2 before the collision = V2 = 0 m/s

Velocity of the blocks after the collision = Vf

Initial momentum of the two block system = Pi

Pi = m1V1 + m2V2

Pi = (1.7)(29) + (59)(0)

Pi = 49.3 kg.m/s

By conservation of linear momentum,

m1V1 + m2V2 = (m1 + m2)Vf

(1.7)(29) + (59)(0) = (1.7 + 59)Vf

Vf = 0.812 m/s

Initial kinetic energy = KEi

KEi = m1V12/2 + m2V22/2

KEi = (1.7)(29)2/2 + (59)(0)2/2

KEi = 714.85 J

Final kinetic energy = KEf

KEf = (m1 + m2)Vf2/2

KEf = (1.7 + 59)(0.812)2/2

KEf = 20.01 J

Change in kinetic energy = KE

KE = KEf - KEi

KE = 20.01 - 714.85

KE = -694.84 J

Total initial momentum of the two block system = 49.3 kg.m/s

Final velocity of the two block system = 0.812 m/s

Change in kinetic energy due to the collision = - 694.84 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Block 1, of mass m1 = 12.3 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 12.3 kg , moves along a frictionless air track with speed v1 = 13.0 m/s . It collides with block 2, of mass m2 = 39.0 kg , which was initially at rest. The blocks stick together after the collision. Find the magnitude pi of the total initial momentum of the two-block system. Find vf, the magnitude of the final velocity of the two-block system. What is the change ΔK=Kfinal−Kinitial in the two-block system's...
Block 1, of mass m1 = 9.70 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 9.70 kg , moves along a frictionless air track with speed v1 = 27.0 m/s . It collides with block 2, of mass m2 = 55.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) Part A: Find the magnitude pi of the total initial momentum of the two-block system. Part B: Find vf, the magnitude of the final velocity of the two-block system. Part C: What...
Block 1, of mass m1 = 5.30 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 5.30 kg , moves along a frictionless air track with speed v1 = 31.0 m/s . It collides with block 2, of mass m2 = 51.0 kg , which was initially at rest. The blocks stick together after the collision. A.Find the magnitude pi of the total initial momentum of the two-block system. B.Find vf, the magnitude of the final velocity of the two-block system. C. What is the change ΔK=Kfinal−Kinitial in the two-block...
Block 1, of mass m 1 =9.50 kg , moves along a frictionless air track with...
Block 1, of mass m 1 =9.50 kg , moves along a frictionless air track with speed v 1 =27.0 m/s . It collides with block 2 m2 =13.0 kg , which was initially at restThe blocks stick together after the collision. Find the Magnitude p1 of the total inital momentum of the two block system. Find vf, the magnitude of the final velocity of the two block system.
A block of mass m1 = 1.20 kg moving at v1 = 1.20 m/s undergoes a...
A block of mass m1 = 1.20 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.500 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.60 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...
A block with mass m1 = 10 kg moving at 5 m/s collides with another block...
A block with mass m1 = 10 kg moving at 5 m/s collides with another block with mass m2 = 20 kg moving the other way at 1 m/s. The two blocks stick together after the collision. (a) What is their common final velocity, vf ? (b) The blocks collide again, this time elastically. Assume that the outgoing blocks move away from the collision along the initial line of approach. What are the final velocities, v1f and v2f ?
A block with mass m1 = 10 kg moving at 5 m/s collides with another block...
A block with mass m1 = 10 kg moving at 5 m/s collides with another block with mass m2 = 20 kg moving the other way at 1 m/s. The two blocks stick together after the collision. (a) What is their common final velocity, ->vf ? (b) What is the center of mass velocity, ->v_CM? (c) What would this collision look like in the center-of-mass frame?
In the figure, block 2 (mass 1.60 kg) is at rest on a frictionless surface and...
In the figure, block 2 (mass 1.60 kg) is at rest on a frictionless surface and touching the end of an unstretched spring of spring constant 128 N/m. The other end of the spring is fixed to a wall. Block 1 (mass 1.70 kg), traveling at speed v1 = 5.80 m/s, collides with block 2, and the two blocks stick together. When the blocks momentarily stop, by what distance is the spring compressed?
A block with mass m1 = 0.450 kg is released from rest on a frictionless track...
A block with mass m1 = 0.450 kg is released from rest on a frictionless track at a distance h1 = 2.25 m above the top of a table. It then collides elastically with an object having mass m2 = 0.900 kg that is initially at rest on the table, as shown in the figure below. (a) Determine the velocities of the two objects just after the collision. (Assume the positive direction is to the right. Indicate the direction with...
Two blocks move along a linear path on a nearly frictionless air track. One block, of...
Two blocks move along a linear path on a nearly frictionless air track. One block, of mass 0.112 kg, initially moves to the right at a speed of 5.40 m/s, while the second block, of mass 0.224 kg, is initially to the left of the first block and moving to the right at 7.40 m/s. Find the final velocities of the blocks, assuming the collision is elastic. velocity of the 0.224 kg block = velocity of the 0.112 kg block...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT