Question

An ambulance driver traveling at 34.0 m/s (76.1 mph) honks his horn as he sees a...

An ambulance driver traveling at 34.0 m/s (76.1 mph) honks his horn as he sees a motorist ahead on the highway traveling in the same direction. The motorist hears a frequency of 378 Hz and notices that his own speedometer reads 33.6 mph (15.0 m/s). Calculate the frequency that the ambulance driver hears. (Speed of sound is 340 m/s) (in Hz) A: 1.17×10^2 B: 1.46×10^2 C: 1.82×10^2 D: 2.28×10^2 E: 2.85×10^2 F: 3.56×10^2 G: 4.45×10^2 H: 5.56×10^2

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider an ambulance traveling north toward an accident scene at 29.6 m/s and emitting a frequency...
Consider an ambulance traveling north toward an accident scene at 29.6 m/s and emitting a frequency heard within the ambulance as 1420 Hz. A variety of observers hear the ambulance. Determine the frequency that each hears. a) An accident victim lying motionless in the street ahead of the ambulance. b) A helpful witness running south toward the ambulance at 5.4 m/s. c) The motorist who struck the victim, fleeing the scene to the north at 34.8 m/s. d) An ambulance...
A train approaches a crossing at a speed of 20.0 m/s, sounding a horn with a...
A train approaches a crossing at a speed of 20.0 m/s, sounding a horn with a frequency of 1000 Hz. A driver stopped at the crossing blows his horn (f = 800 Hz) in frustration. (a) What frequency does the driver hear coming from the approaching train horn? (b) The driver continues blowing his horn after the train passes. What frequency does the train engineer hear coming from the car horn as the train moves away from the crossing?
A driver on Route 15 is traveling at 50 mph (~22 m/s) when they see a...
A driver on Route 15 is traveling at 50 mph (~22 m/s) when they see a dog in the road ahead. The driver’s reaction time to apply the brakes is 1.5 s. As the driver nears the dog they honk the horn and thankfully the dog runs to safety on the side of the road. The car finally comes to a stop 5 s after applying the brakes and 4 m past where the dog had been standing. How far...
A driver on Route 15 is traveling at 50 mph (~22 m/s) when they see a...
A driver on Route 15 is traveling at 50 mph (~22 m/s) when they see a dog in the road ahead. The driver’s reaction time to apply the brakes is 1.5 s. As the driver nears the dog they honk the horn and thankfully the dog runs to safety on the side of the road. The car finally comes to a stop 5 s after applying the brakes and 4 m past where the dog had been standing. How far...
1) A car is approaching a reflecting wall. A stationary observer behind the car hears a...
1) A car is approaching a reflecting wall. A stationary observer behind the car hears a sound of frequency 790 Hz from the car horn and a sound of frequency 873 Hz from the wall. (a) How fast is the car traveling? .......... km/h (b) What is the frequency of the car horn? ........... Hz (c) What frequency does the car driver hear reflected from the wall? ............ Hz ------------------------------------------------------------------------------------------------ 2) A bat flying toward an obstacle at 10 m/s...
Traveling at 40.2 m/s, a driver applies the brakes to his fast-moving car and skids out...
Traveling at 40.2 m/s, a driver applies the brakes to his fast-moving car and skids out of control on a wet concrete horizontal road. The 2000 kg car is headed directly toward a student waiting to catch a bus to campus who is standing 58.0 m down the road. Luckily, Superman is flying overhead and surveys the situation. Knowing that the coefficient of kinetic friction between rubber and rough wet concrete is .800, he determines that friction alone will not...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT