Question

A 295.0 g black of ice is cooled to -78 degrees C. It is added to...

A 295.0 g black of ice is cooled to -78 degrees C. It is added to 160 g of water in a calorimeter (of negligible specific heat) at a temperature of 25 degrees C. Please use the specific heats and latent heats from the equation sheet.

a) List neatly your knowns and unknowns.

b) which gets to 0 degrees C first, the water or the ice? Make preliminary calculations to support your answer.

c) does the one that gets to 0 degrees C first completely change phases? Make preliminary calculations to support your answer.

d) what is the final temperature of the system?

e) determine the amount of ice that melts or the amount of water that freezes.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 40 g block of ice is cooled to -78°C. and is then added to 610...
A 40 g block of ice is cooled to -78°C. and is then added to 610 g of water in an 80 g copper calorimeter at a temperature of 26°C. Determine the final temperature of the system consisting of the ice, water, and calorimeter. Remember that the ice must first warm to 0°C, melt, and then continue warming as water. The specific heat of ice is 0.500 cal/g ·°C = 2090 J/kg°C
A 40-g block of ice is cooled to −68°C and is then added to 570 g...
A 40-g block of ice is cooled to −68°C and is then added to 570 g of water in an 80-g copper calorimeter at a temperature of 28°C. Determine the final temperature of the system consisting of the ice, water, and calorimeter. (If not all the ice melts, determine how much ice is left.) Remember that the ice must first warm to 0°C, melt, and then continue warming as water. (The specific heat of ice is 0.500 cal/g · °C...
A 40-g block of ice is cooled to −70°C and is then added to 570 g...
A 40-g block of ice is cooled to −70°C and is then added to 570 g of water in an 80-g copper calorimeter at a temperature of 22°C. Determine the final temperature of the system consisting of the ice, water, and calorimeter. (If not all the ice melts, determine how much ice is left.) Remember that the ice must first warm to 0°C, melt, and then continue warming as water. (The specific heat of ice is 0.500 cal/g · °C...
A 40-g block of ice is cooled to −76°C and is then added to 570 g...
A 40-g block of ice is cooled to −76°C and is then added to 570 g of water in an 80-g copper calorimeter at a temperature of 26°C. Determine the final temperature of the system consisting of the ice, water, and calorimeter. (If not all the ice melts, determine how much ice is left.) Remember that the ice must first warm to 0°C, melt, and then continue warming as water. (The specific heat of ice is 0.500 cal/g · °C...
A 40-g block of ice is cooled to −72°C and is then added to 590 g...
A 40-g block of ice is cooled to −72°C and is then added to 590 g of water in an 80-g copper calorimeter at a temperature of 26°C. Determine the final temperature of the system consisting of the ice, water, and calorimeter. (If not all the ice melts, determine how much ice is left.) Remember that the ice must first warm to 0°C, melt, and then continue warming as water. (The specific heat of ice is 0.500 cal/g · °C...
A 24 g block of ice is cooled to −63◦C. It is added to 572 g...
A 24 g block of ice is cooled to −63◦C. It is added to 572 g of water in a 98 g copper calorimeter at a temperature of 30◦C. Find the final temperature. The specific heat of copper is 387 J/kg ·◦C and of ice is 2090 J/kg ·◦C. The latent heat of fusion of water is 3.33 × 105 J/kg and its specific heat is 4186 J/kg·◦C. Answer in units of ◦C.
A 31 g block of ice is cooled to −90◦C. It is added to 591 g...
A 31 g block of ice is cooled to −90◦C. It is added to 591 g of water in an 65 g copper calorimeter at a temperature of 26◦C. Find the final temperature. The specific heat of copper is 387 J/kg · ◦C and of ice is 2090 J/kg · ◦C . The latent heat of fusion of water is 3.33 × 105 J/kg and its specific heat is 4186 J/kg · ◦C . Answer in units of ◦C.
A 40 g block of ice is cooled to -69°C. and is then added to 630...
A 40 g block of ice is cooled to -69°C. and is then added to 630 g of water in an 80 g copper calorimeter at a temperature of 27°C. Determine the final temperature of the system consisting of the ice, water, and calorimeter. Remember that the ice must first warm to 0°C, melt, and then continue warming as water. The specific heat of ice is 0.500 cal/g ·°C = 2090 J/kg°C.
A 116-g cube of ice at 0 ∘C is dropped into 1.26 kg of water that...
A 116-g cube of ice at 0 ∘C is dropped into 1.26 kg of water that was originally 80.1 ∘C. What is the final temperature of the water after the ice melts and the water comes to thermal equilibrium? This problem requires a lot of algebra. You will make fewer errors if you solve for the answer using symbols and then plug in the numbers. The specific heat of water and the latent heat of fusion for water are given...
100. g of ice at 0 degrees C is added to 300.0 g of water at...
100. g of ice at 0 degrees C is added to 300.0 g of water at 60 degrees C. Assuming no transfer of heat to the surroundings, what is the temperature of the liquid water after all the ice has melted and equilibrium is reached? Specific Heat (ice)= 2.10 J/g C Specific Heat (water)= 4.18 J/g C Heat of fusion = 333 J/g Heat of vaporization= 2258 J/g