Question

A tank contains 2 kg of water at 25°C. Into this tank, a person dropped a...

A tank contains 2 kg of water at 25°C. Into this tank, a person dropped a 0.9-kg piece of metal that has a temperature of 75°C. What will be the equilibrium temperature of the mixture? Specific heat of metal is 448 J/kg-°C)

Homework Answers

Answer #1

Suppose the final temperature is T.

Now Using energy conservation:

Heat gained by 2 kg water = Heat released by 0.9 kg metal

Q1 = Q2

m1*C1*dT1 = m2*C2*dT2

dT1 = Tf - Ti = T - 25

dT2 = 75 - T

m1 = mass of water = 2 kg

m2 = mass of metal = 0.9 kg

C1 = Specific heat capacity of water = 4186 J/kg-°C

C2 = Specific heat capacity of metal = 448 J/kg-°C

So, m1*C1*dT1 = m2*C2*dT2

2*4186*(T - 25) = 0.9*448*(75 - T)

T = [0.9*448*75 + 2*4186*25]/(2*4186 + 0.9*448)

T = 27.3 °C

"Let me know if you have any query."

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.26 kg iron horseshoe that is initially at 787 ◦C is dropped into a bucket...
A 0.26 kg iron horseshoe that is initially at 787 ◦C is dropped into a bucket containing 20 kg of water at 34◦C. What is the final equilibrium temperature? Neglect any energy transfer to or from the surroundings and assume the specific heat of iron is 448 J/kg · ◦ C . The specific heat of water is 4186 J/kg · ◦ C . Answer in units of ◦C
An unknown metal of mass 0.280 kg is heated to 160.0°C and dropped in an aluminum...
An unknown metal of mass 0.280 kg is heated to 160.0°C and dropped in an aluminum calorimeter of mass 0.250 kg that contains 0.170 kg of water at 30°C. The calorimeter, water, and unknown metal have a final temperature of 46.0°C. Find the specific heat of the unknown metal. Hint: you need the specific heat of water and aluminum. Use units of [J/(kg.K)] and the values in your book for the specific heat.
008 A 0.0456 kg ingot of metal is heated to 215◦C and then is dropped into...
008 A 0.0456 kg ingot of metal is heated to 215◦C and then is dropped into a beaker containing 0.415 kg of water initially at 19◦C. If the final equilibrium state of the mixed system is 21.4 ◦C, find the specific heat of the metal. The specific heat of water is 4186 J/kg · ◦ C. Answer in units of J/kg · ◦ C.
An insulating cup contains water at 25 ∘C. 30 grams of ice at 0 ∘C is...
An insulating cup contains water at 25 ∘C. 30 grams of ice at 0 ∘C is placed in the water. The system comes to equilibrium with a final temperature of 14∘C. How much water in grams was in the cup before the ice was added? (specific heat of ice is 2090 J/(kg LaTeX: ^\circ∘C), specific heat of water is 4186 J/(kg LaTeX: ^\circ∘C), latent heat of the ice to water transition is 3.33 x10^5 J/kg)
An aluminum piece of 2.5kg (Specific heat: 900J/kgC) at 115C is dropped into 1.5 kg of...
An aluminum piece of 2.5kg (Specific heat: 900J/kgC) at 115C is dropped into 1.5 kg of water (Specific heat: 4.19x10^3 J/kgC) at 20C.The water covers totally the aluminum piece and in a few minutes the system gets the equilibrium temperature. Calculate this temperature.
An 100-g aluminum calorimeter contains 280 g of water at an equilibrium temperature of 20°C. A...
An 100-g aluminum calorimeter contains 280 g of water at an equilibrium temperature of 20°C. A 170-g piece of metal, initially at 277°C, is added to the calorimeter. The final temperature at equilibrium is 32°C. Assume there is no external heat exchange. The specific heats of aluminum and water are 910 J/kg·K and 4190 J/kg·K, respectively. The specific heat of the metal is closest to: a) 270 J/kg·K. b) 240 J/kg·K. c) 330 J/kg·K. d) 390 J/kg·K. e) 360 J/kg·K.
An insulated beaker with negligible mass contains a mass of 0.200 kg of water at a...
An insulated beaker with negligible mass contains a mass of 0.200 kg of water at a temperature of 81.7 ∘C. How many kilograms of ice at a temperature of − 21.1 ∘C must be dropped in the water to make the final temperature of the system 30.8 ∘C? Take the specific heat for water to be 4190 J/(kg⋅K) , the specific heat for ice to be 2100 J/(kg⋅K) , and the heat of fusion for water to be 334 kJ/kg...
An insulated beaker with negligible mass contains a mass of 0.350 kg of water at a...
An insulated beaker with negligible mass contains a mass of 0.350 kg of water at a temperature of 69.4 ∘C. How many kilograms of ice at a temperature of − 14.7 ∘C must be dropped in the water to make the final temperature of the system 29.3 ∘C? Take the specific heat for water to be 4190 J/(kg⋅K) , the specific heat for ice to be 2100 J/(kg⋅K) , and the heat of fusion for water to be 334 kJ/kg...
An insulated beaker with negligible mass contains liquid water with a mass of 0.345 kg and...
An insulated beaker with negligible mass contains liquid water with a mass of 0.345 kg and a temperature of 76.5 ∘C . How much ice at a temperature of -19.9 ∘C must be dropped into the water so that the final temperature of the system will be 27.0 ∘C ? Take the specific heat of liquid water to be 4190 J/kg⋅K , the specific heat of ice to be 2100 J/kg⋅K , and the heat of fusion for water to...
An insulated beaker with negligible mass contains liquid water with a mass of 0.235 kg and...
An insulated beaker with negligible mass contains liquid water with a mass of 0.235 kg and a temperature of 68.6 ∘C . How much ice at a temperature of -20.0 ∘C must be dropped into the water so that the final temperature of the system will be 25.0 ∘C ? Take the specific heat of liquid water to be 4190 J/kg⋅K , the specific heat of ice to be 2100 J/kg⋅K , and the heat of fusion for water to...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT