Question

An iron boiler of mass 180 kg contains 690 kg of water at 23 ∘C. A...

An iron boiler of mass 180 kg contains 690 kg of water at 23 ∘C. A heater supplies energy at the rate of 58,000 kJ/h. The specific heat of iron is 450 J/kg⋅C∘, the specific heat of water is 4186 J/kg⋅C∘, the heat of vaporization of water is 2260 kJ/kg⋅C∘. Assume that before the water reaches the boiling point, all the heat energy goes into raising the temperature of the iron or the steam, and none goes to the vaporization of water. After the water starts to boil, all the heat energy goes into boiling the water, and none goes to raising the temperature of the iron or the steam.

Part A

How long does it take for the water to reach the boiling point from 23 ∘C?

Express your answer using two significant figures.

Part B

How long does it take for the water to all have changed to steam from 23 ∘C?

Express your answer using two significant figures.

Homework Answers

Answer #1

apply heat needed to Boil water from 23 to 100 deg

as Q = mcDT

where m is mass of water

c is specific heat

DT is change of tmep = 100-23 = 77 deg C

so

Qw = 690 * 4186 * 77

Qw = 223 MJ of energy

for Iron,

heat needed si Qi = mcDT

Qi = 180 * 450 * 77

Qi = 6.23 MJ

to convert water into Steam,

Latent heat of water = ML = 690 * 2250 = 1.552 MJ

iRon Boiler remains at 100 deg C

so


total eenrgy Q =Qi +Qw + Ql

Q = 223 + 1.552 + 6.23

Q = 230.78 MJ

now use Power P = Energy/time

so

time t = E/P

t = 58000/ 230.78 = 251.32 Hrs total time taken

-----------

time taken by water =58000/223 = 0.260 hrs

time taken by Iron = 58000/1.552 = 37.3 hrs

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An iron boiler of mass 180 kg contains 850 kg of water at 23 ∘C. A...
An iron boiler of mass 180 kg contains 850 kg of water at 23 ∘C. A heater supplies energy at the rate of 58,000 kJ/h. The specific heat of iron is 450 J/kg⋅C∘, the specific heat of water is 4186 J/kg⋅C∘, the heat of vaporization of water is 2260 kJ/kg⋅C∘. Assume that before the water reaches the boiling point, all the heat energy goes into raising the temperature of the iron or the steam, and none goes to the vaporization...
An iron boiler of mass 180 kg contains 830 kg of water at 11 ∘C. A...
An iron boiler of mass 180 kg contains 830 kg of water at 11 ∘C. A heater supplies energy at the rate of 58,000 kJ/h. The specific heat of iron is 450 J/kg⋅C∘, the specific heat of water is 4186 J/kg⋅C∘, the heat of vaporization of water is 2260 kJ/kg⋅C∘. Assume that before the water reaches the boiling point, all the heat energy goes into raising the temperature of the iron or the steam, and none goes to the vaporization...
An iron boiler of mass 180 kg contains 770 kg of water at 21 ∘C. A...
An iron boiler of mass 180 kg contains 770 kg of water at 21 ∘C. A heater supplies energy at the rate of 58,000 kJ/h. The specific heat of iron is 450 J/kg⋅C∘, the specific heat of water is 4186 J/kg⋅C∘, the heat of vaporization of water is 2260 kJ/kg⋅C∘. Assume that before the water reaches the boiling point, all the heat energy goes into raising the temperature of the iron or the steam, and none goes to the vaporization...
An iron boiler of mass 180 kg contains 770 kg of water at 21 ∘C. A...
An iron boiler of mass 180 kg contains 770 kg of water at 21 ∘C. A heater supplies energy at the rate of 58,000 kJ/h. The specific heat of iron is 450 J/kg⋅C∘, the specific heat of water is 4186 J/kg⋅C∘, the heat of vaporization of water is 2260 kJ/kg⋅C∘. Assume that before the water reaches the boiling point, all the heat energy goes into raising the temperature of the iron or the steam, and none goes to the vaporization...
An iron boiler of mass 180 kg contains 790 kgof water at 21 ∘C. A heater...
An iron boiler of mass 180 kg contains 790 kgof water at 21 ∘C. A heater supplies energy at the rate of 58,000 kJ/h. The specific heat of iron is 450 J/kg⋅C∘, the specific heat of water is 4186 J/kg⋅C∘, the heat of vaporization of water is 2260 kJ/kg⋅C∘. Assume that before the water reaches the boiling point, all the heat energy goes into raising the temperature of the iron or the steam, and none goes to the vaporization of...
What mass of steam at 100∘C must be added to 1.00 kg of ice at 0∘C...
What mass of steam at 100∘C must be added to 1.00 kg of ice at 0∘C to yield liquid water at 18 ∘C? The heat of fusion for water is 333 kJ/kg , the specific heat is 4186 J/kg⋅C∘J/kg⋅C∘ , the heat of vaporization is 2260 kJ//kg . Express your answer to two significant figures and include the appropriate units m=
Part A What mass of steam at 100∘C must be added to 1.90 kg of ice...
Part A What mass of steam at 100∘C must be added to 1.90 kg of ice at 0∘C to yield liquid water at 18 ∘C? The heat of fusion for water is 333 kJ/kg , the specific heat is 4186 J/kg⋅C∘ , the heat of vaporization is 2260 kJ/kg . Express your answer to two significant figures and include the appropriate units. m =
What mass of steam at 100∘C must be added to 1.10 kg of ice at 0∘C...
What mass of steam at 100∘C must be added to 1.10 kg of ice at 0∘C to yield liquid water at 19 ∘C? The heat of fusion for water is 333 kJ/kg , the specific heat is 4186 J/kg⋅C∘ , the heat of vaporization is 2260 kJ/kg .
Part A A copper pot of mass 2.5 kg contains 5.2 litres of water (i.e. 5.2...
Part A A copper pot of mass 2.5 kg contains 5.2 litres of water (i.e. 5.2 kg) at room temperature (200C). An iron block of mass 9.4 kg is dropped into the water and when the system comes into thermal equilibrium, a temperature of 380C is measured. What is the initial temperature of the iron block? Give your answer in oC to three significant figures. Part B Iron has a specific heat that is larger than that of copper. A...
A cup of warm water (0.5 kg at 25*C) is poured into a large vat of...
A cup of warm water (0.5 kg at 25*C) is poured into a large vat of liquid nitrogen at 77K. The mixture is thermally insulated from the surrounding room. The following table of data may be relevant for this problem (all atmospheric pressure): Nitrogen Water Freezing Point(K) Boiling Point (K) 63 77 273 373 Specific Heat Capacity (J/kg.K) 1040 4186(water) 2108(ice) Latent Heat of Fusion(KJ/kg) Latent Heat of Vaporization (kJ/kg) 25.7 200 333 2260 (A) What will the final temperature...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT