Question

An iron boiler of mass 180 kg contains 850 kg of water at 23 ∘C. A...

An iron boiler of mass 180 kg contains 850 kg of water at 23 ∘C. A heater supplies energy at the rate of 58,000 kJ/h. The specific heat of iron is 450 J/kg⋅C∘, the specific heat of water is 4186 J/kg⋅C∘, the heat of vaporization of water is 2260 kJ/kg⋅C∘. Assume that before the water reaches the boiling point, all the heat energy goes into raising the temperature of the iron or the steam, and none goes to the vaporization of water. After the water starts to boil, all the heat energy goes into boiling the water, and none goes to raising the temperature of the iron or the steam. How long does it take for the water to reach the boiling point from 23 ∘C?How long does it take for the water to all have changed to steam from 23 ∘C?

Homework Answers

Answer #1

Specific heat water = 4.186 kJ/kg�C
You want to heat 850 = 850kg water 81�C. This will take :
850*81*4.186 = 288.20MJheat

Specific heat of iron = 0.460 kJ/kg�C
You want to heat 180kg = 180kg 81�C This will take:
180*81*0.450 = 6.5MJ

Time taken to reach 100�C = 288.2+6.5= 294.7

294.7/58 = 5.08 hours

You now convert the water to steam at 100�C
Latent heat of steam = 2260 kJ/kg This will require:
850*2260 = 1,921,MJ

The iron boiler will remain at 100�C

Now add up Total heat energy required =

294.7MJ+1,921,MJ = 2215.7MJ
Heater provides 58,MJ/hr

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An iron boiler of mass 180 kg contains 690 kg of water at 23 ∘C. A...
An iron boiler of mass 180 kg contains 690 kg of water at 23 ∘C. A heater supplies energy at the rate of 58,000 kJ/h. The specific heat of iron is 450 J/kg⋅C∘, the specific heat of water is 4186 J/kg⋅C∘, the heat of vaporization of water is 2260 kJ/kg⋅C∘. Assume that before the water reaches the boiling point, all the heat energy goes into raising the temperature of the iron or the steam, and none goes to the vaporization...
An iron boiler of mass 180 kg contains 770 kg of water at 21 ∘C. A...
An iron boiler of mass 180 kg contains 770 kg of water at 21 ∘C. A heater supplies energy at the rate of 58,000 kJ/h. The specific heat of iron is 450 J/kg⋅C∘, the specific heat of water is 4186 J/kg⋅C∘, the heat of vaporization of water is 2260 kJ/kg⋅C∘. Assume that before the water reaches the boiling point, all the heat energy goes into raising the temperature of the iron or the steam, and none goes to the vaporization...
An iron boiler of mass 180 kg contains 770 kg of water at 21 ∘C. A...
An iron boiler of mass 180 kg contains 770 kg of water at 21 ∘C. A heater supplies energy at the rate of 58,000 kJ/h. The specific heat of iron is 450 J/kg⋅C∘, the specific heat of water is 4186 J/kg⋅C∘, the heat of vaporization of water is 2260 kJ/kg⋅C∘. Assume that before the water reaches the boiling point, all the heat energy goes into raising the temperature of the iron or the steam, and none goes to the vaporization...
An iron boiler of mass 180 kg contains 790 kgof water at 21 ∘C. A heater...
An iron boiler of mass 180 kg contains 790 kgof water at 21 ∘C. A heater supplies energy at the rate of 58,000 kJ/h. The specific heat of iron is 450 J/kg⋅C∘, the specific heat of water is 4186 J/kg⋅C∘, the heat of vaporization of water is 2260 kJ/kg⋅C∘. Assume that before the water reaches the boiling point, all the heat energy goes into raising the temperature of the iron or the steam, and none goes to the vaporization of...
An iron boiler of mass 180 kg contains 830 kg of water at 11 ∘C. A...
An iron boiler of mass 180 kg contains 830 kg of water at 11 ∘C. A heater supplies energy at the rate of 58,000 kJ/h. The specific heat of iron is 450 J/kg⋅C∘, the specific heat of water is 4186 J/kg⋅C∘, the heat of vaporization of water is 2260 kJ/kg⋅C∘. Assume that before the water reaches the boiling point, all the heat energy goes into raising the temperature of the iron or the steam, and none goes to the vaporization...
What mass of steam at 100∘C must be added to 1.10 kg of ice at 0∘C...
What mass of steam at 100∘C must be added to 1.10 kg of ice at 0∘C to yield liquid water at 19 ∘C? The heat of fusion for water is 333 kJ/kg , the specific heat is 4186 J/kg⋅C∘ , the heat of vaporization is 2260 kJ/kg .
What mass of steam at 100∘C must be added to 1.00 kg of ice at 0∘C...
What mass of steam at 100∘C must be added to 1.00 kg of ice at 0∘C to yield liquid water at 18 ∘C? The heat of fusion for water is 333 kJ/kg , the specific heat is 4186 J/kg⋅C∘J/kg⋅C∘ , the heat of vaporization is 2260 kJ//kg . Express your answer to two significant figures and include the appropriate units m=
Part A What mass of steam at 100∘C must be added to 1.90 kg of ice...
Part A What mass of steam at 100∘C must be added to 1.90 kg of ice at 0∘C to yield liquid water at 18 ∘C? The heat of fusion for water is 333 kJ/kg , the specific heat is 4186 J/kg⋅C∘ , the heat of vaporization is 2260 kJ/kg . Express your answer to two significant figures and include the appropriate units. m =
A cup of warm water (0.5 kg at 25*C) is poured into a large vat of...
A cup of warm water (0.5 kg at 25*C) is poured into a large vat of liquid nitrogen at 77K. The mixture is thermally insulated from the surrounding room. The following table of data may be relevant for this problem (all atmospheric pressure): Nitrogen Water Freezing Point(K) Boiling Point (K) 63 77 273 373 Specific Heat Capacity (J/kg.K) 1040 4186(water) 2108(ice) Latent Heat of Fusion(KJ/kg) Latent Heat of Vaporization (kJ/kg) 25.7 200 333 2260 (A) What will the final temperature...
(a) How much energy does it take to heat 250 g of water from 20 ◦C...
(a) How much energy does it take to heat 250 g of water from 20 ◦C to the boiling point of 100 ◦C? (The specific heat of water is 4190 J/kg · K) (b) (Suppose you wanted to cause the temperature change in part (a) by using an 800W microwave. If we assume all the power delivered by the microwave goes into the water, how long will it take for the water to change temperature? (c) The heat of vaporization...