Question

The following data were recorded in the experiment (E106): mass of calorimeter 60g mass of calorimeter...

The following data were recorded in the experiment (E106): mass of calorimeter 60g mass of calorimeter with water 230 g mass of metal specimen 58 g initial temperature of water and calorimeter 20 ᵒC initial temperature of the metal 100 ᵒC Specific Heat Capacity of Calorimeter 0.22 cal/g. Cᵒ Final temperature of the mixture 27 ᵒC What is the specific heat capacity of the metal specimen in cal/g.ᵒC ?

A .0.09

B. 0.30

C. 0.22

D. 0.03

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a calorimetry experiment to determine the specific heat capacity of a metal block, the following...
In a calorimetry experiment to determine the specific heat capacity of a metal block, the following data was recorded: Quantity Mass of the metal block 0.50 kg Mass of empty calorimeter + Stirrer 0.06 kg Mass of calorimeter + stirrer + water 0.20 kg Mass of water 0.14 kg Initial Temperature of metal block 55.5 ⁰C Initial Temperature of water and calorimeter 22 ⁰C Final Temperature of block- water system 27.4 ⁰C Take the specific heat capacity of water to...
In an experiment, 22.5 g of metal was heated to 98.0°C and then quickly transferred to...
In an experiment, 22.5 g of metal was heated to 98.0°C and then quickly transferred to 150.0 g of water in a calorimeter. The initial temperature of the water was 27.0°C, and the final temperature after the addition of the metal was 32.5°C. Assume the calorimeter behaves ideally and does not absorb or release heat. What is the value of the specific heat capacity (in J/g•°C) of the metal?
In an experiment, 25.5 g of metal was heated to 98.0°C and then quickly transferred to...
In an experiment, 25.5 g of metal was heated to 98.0°C and then quickly transferred to 150.0 g of water in a calorimeter. The initial temperature of the water was 21.0°C, and the final temperature after the addition of the metal was 32.5°C. Assume the calorimeter behaves ideally and does not absorb or release heat. What is the value of the specific heat capacity (in J/g•°C) of the metal?
In an experiment, 26.0 g of metal was heated to 98.0°C and then quickly transferred to...
In an experiment, 26.0 g of metal was heated to 98.0°C and then quickly transferred to 150.0 g of water in a calorimeter. The initial temperature of the water was 20.5°C, and the final temperature after the addition of the metal was 32.5°C. Assume the calorimeter behaves ideally and does not absorb or release heat. What is the value of the specific heat capacity (in J/g•°C) of the metal? _________________ J/g•°C
A student obtains the following data in a calorimetry experiment designed to measure the specific heat...
A student obtains the following data in a calorimetry experiment designed to measure the specific heat of aluminum. Initial temperature of water and calorimeter 70.4°C Mass of water 0.403 kg Mass of calorimeter 0.04 kg Specific heat of calorimeter 0.60 kJ/kg·°C Initial temperature of aluminum 27.1°C Mass of aluminum 0.196 kg Final temperature of mixture 66.4°C (a) Use these data to determine the specific heat of aluminum. J/kg · °C (b) Is your result within 15% of 900 J/kg ·...
Answer the following questions: a) A calorimeter, specific heat capacity 500.0 J/kgC, mass 200.0 g, contains...
Answer the following questions: a) A calorimeter, specific heat capacity 500.0 J/kgC, mass 200.0 g, contains 300.0 g of water at 40.0 C. If 50.0 g of ice at 0.00 C is dropped into the water and stirred, the temperature of the mixture when the ice has melted is 23.8 C. Calculate the heat of fusion of ice. b) What is the final temperature attained when 900.0 g of ice at 0.00 C is dropped into 3400.0 g of water...
An iron calorimeter of mass 153 g contains 260 g of water. The system is in...
An iron calorimeter of mass 153 g contains 260 g of water. The system is in thermal equilibrium at +10°C. We place two blocks of metal in the water: one is a 45 g piece of copper with an initial temperature of +61°C; the second piece has a mass of 75 g and is initially at +100°C. The combined system reaches a final equilibrium temperature of +41°C. Calculate the specific heat capacity of the unknown second piece of metal.
There is 300 grams of water in the 200-gram calorimeter cup (inner can). Both are at...
There is 300 grams of water in the 200-gram calorimeter cup (inner can). Both are at room temperature of 20 degrees Celsius. A 100-gram metal sample with an initial temperature of 90 degrees Celsius is placed in the calorimeter resulting. The resulting final temperature of the system is 30 degrees Celsius. If the calorimeter can has a specific heat of 0.2 cal/g-C degree, determine the specific heat of the metal sample
Data Balance temperature: 27ºC Initial water temperature: 23ºC Initial temperature of the metal part: 68ºC Mass...
Data Balance temperature: 27ºC Initial water temperature: 23ºC Initial temperature of the metal part: 68ºC Mass of the metal part: 193 grams Mass of the empty calorimeter: 110 grams Mass of the water inside the calorimeter: 250 grams Specific heat of water: 4.19 J / gºC Specific heat of the calorimeter (aluminum): 0.90 J / gºC Experiment calculations 1- Calculate the heat gained by the water 2- Calculate the heat gained by the calorimeter 3- Calculate the specific heat of...
In an experiment to determine the enthalpy of fusion of ice, the following data was collected:...
In an experiment to determine the enthalpy of fusion of ice, the following data was collected: Initial mass of water in the calorimeter = 70.89g Initial temperature of the water in the calorimeter = 17.6 degrees C Final mass of temperature in the calorimeter = 0.0 degrees C Please calculate: a) the mass of the ice that melted b) the number of mol of ice that melted c) the change in temperature of the initial mass of water in the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT