Question

In an experiment, 22.5 g of metal was heated to 98.0°C and then quickly transferred to...

In an experiment, 22.5 g of metal was heated to 98.0°C and then quickly transferred to 150.0 g of water in a calorimeter. The initial temperature of the water was 27.0°C, and the final temperature after the addition of the metal was 32.5°C. Assume the calorimeter behaves ideally and does not absorb or release heat.

What is the value of the specific heat capacity (in J/g•°C) of the metal?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In an experiment, 22.0 g of metal was heated to 98.0°C and then quickly transferred to...
In an experiment, 22.0 g of metal was heated to 98.0°C and then quickly transferred to 150.0 g of water in a calorimeter. The initial temperature of the water was 27.0°C, and the final temperature after the addition of the metal was 32.5°C. Assume the calorimeter behaves ideally and does not absorb or release heat.
In an experiment, 25.5 g of metal was heated to 98.0°C and then quickly transferred to...
In an experiment, 25.5 g of metal was heated to 98.0°C and then quickly transferred to 150.0 g of water in a calorimeter. The initial temperature of the water was 21.0°C, and the final temperature after the addition of the metal was 32.5°C. Assume the calorimeter behaves ideally and does not absorb or release heat. What is the value of the specific heat capacity (in J/g•°C) of the metal?
In an experiment, 26.0 g of metal was heated to 98.0°C and then quickly transferred to...
In an experiment, 26.0 g of metal was heated to 98.0°C and then quickly transferred to 150.0 g of water in a calorimeter. The initial temperature of the water was 20.5°C, and the final temperature after the addition of the metal was 32.5°C. Assume the calorimeter behaves ideally and does not absorb or release heat. What is the value of the specific heat capacity (in J/g•°C) of the metal? _________________ J/g•°C
300.0 g of copper is heated to 100.0*C and transferred quickly to a calorimeter containing 400.0...
300.0 g of copper is heated to 100.0*C and transferred quickly to a calorimeter containing 400.0 grams of water initially at 25.0*C. If the final temperature is 29.4*C, calculate the specific heat of copper. The specific heat of water is 4.18 J/g-*C. What assumptions must be made about the calorimeter? How is the first law of thermodynamics and law of conservation of energy used in this experiment.
A student doing an experiment pours 0.500 kg of heated metal whose temperature is 98.0 oC...
A student doing an experiment pours 0.500 kg of heated metal whose temperature is 98.0 oC into a 0.356 kg aluminum calorimeter cup containing 0.418 kg of water at 28.0 °C. The mixture (and the cup) comes to thermal equilibrium at 38.0 °C. The specific heat of the metal is ________ J/kg oC. (specific heat of aluminum = 900 J/kg oC, specific heat of water = 4186 J/kg oC)
A 6.40 g sample of iron (specific heat capacity = 0.451 J/g*C) is placed in a...
A 6.40 g sample of iron (specific heat capacity = 0.451 J/g*C) is placed in a boiling water bath until the temperature of the metal is 100.0*C. The metal is quickly transferred to 119.0g of water at 25.0*C in a calorimeter (specific heat capacity of water = 4.18 J/g*C). Determine the final temperature of the water in the calorimeter (3 significant figures).
A 6.40 g sample of iron (specific heat capacity =0.451 J/g*C) is placed in a boiling...
A 6.40 g sample of iron (specific heat capacity =0.451 J/g*C) is placed in a boiling water bath until the temperature of the metal is 100.0*C. The metal is quickly transferred to 119.0g of water at 25.0*C in a calorimeter (specific heat capacity of water = 4.18 J/g*C). Determine the final temperature of the water in the calorimeter (3 significant figures).
1. A 74.2-g piece of metal is heated to 89.55 degrees C and dropped into 52.0...
1. A 74.2-g piece of metal is heated to 89.55 degrees C and dropped into 52.0 g of water at 23.22 degrees C in a calorimeter with the heat capacity of 41.0 J/C . The final temperature of the system is 27.60 degrees C. a) Assuming that the metal does not react with water and Cs(H2O) = 4.18 J/g*C , calculate the specific heat capacity of the metal in J/g*C b) Most metals have the same molar heat capacity of...
1. A 78.0 g piece of metal at 89.0°C is placed in 125 g of water...
1. A 78.0 g piece of metal at 89.0°C is placed in 125 g of water at 21.0°C contained in a calorimeter. The metal and water come to the same temperature at 27.0°C. - How much heat (in J) did the metal give up to the water? (Assume the specific heat of water is 4.18 J/g·°C across the temperature range.) - What is the specific heat (in J/g·°C) of the metal? 2. A 0.529 g sample of KCl is added...
the specific heat of a metal object is .21 cal/g C. The metal is heated to...
the specific heat of a metal object is .21 cal/g C. The metal is heated to 96C then transferred to a calorimeter contain 75g of water at 18 C. The metal and water reach a final temperature of 22C. What is the mass of the metal? a 4g b 38 g 300 g 75 g 19 g
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT