Question

PROBLEM 10.25 A wheel with a weight of 395 N comes off a moving truck and...

PROBLEM 10.25

A wheel with a weight of 395 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 23.6 rad/s . The radius of the wheel is 0.580 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above the bottom of the hill; this work has a magnitude of 3530 J .

Calculate h.

Use 9.81 m/s2 for the acceleration due to gravity.

Homework Answers

Answer #1

given,

weight of the wheel = 395 N

so,

mass of the wheel = 395/9.8

mass of the wheel = 40.306 kg

angular velocity = 23.6 rad/sec

radius = 0.58 m

moment of inertia = 0.8 * M * R^2

work done by the friction = 3530 J

initial energy possessed by the wheel

Ei = 0.5 * I * omega^2 + 0.5 * M * v^2

Ei = 0.5 * 0.8 * 40.306 * 0.58^2 * 23.6^2 + 0.5 * 40.306 * (23.6 * 0.58)^2

Ei = 6796.61 J

final energy Ef

Ef = frictional work + mgh

Ef = 3530 + 395 * h

by conservation of energy

initial energy = final energy

6796.61 = 3530 + 395 * h

h = 8.26989 m

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A wheel with a weight of 395 N comes off a moving truck and rolls without...
A wheel with a weight of 395 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 26.1 rad/s . The radius of the wheel is 0.651 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above the bottom...
A wheel with a weight of 396 N comes off a moving truck and rolls without...
A wheel with a weight of 396 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 24.2 rad/s . The radius of the wheel is 0.597 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above the bottom...
A wheel with a weight of 387 N comes off a moving truck and rolls without...
A wheel with a weight of 387 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 24.7 rad/s . The radius of the wheel is 0.592 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above the bottom...
A wheel with a weight of 386 N comes off a moving truck and rolls without...
A wheel with a weight of 386 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 26.0 rad/s . The radius of the wheel is 0.650 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above the bottom...
A wheel with a weight of 393 N comes off a moving truck and rolls without...
A wheel with a weight of 393 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 22.3 rad/s . The radius of the wheel is 0.628 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of habove the bottom of...
A 392 N wheel comes off a moving truck and rolls without slipping along a highway....
A 392 N wheel comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at 27 rad/s. The radius of the wheel is 0.600 m, and its moment of inertia about its rotation axis is 0.800MR2. Friction does work on the wheel as it rolls up the hill to a stop, a height h above the bottom of the hill; this work has absolute value 2600 J. Calculate hh.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT