Question

Block A of mass (mA) = 9.0 kg with an initial speed (uA) = 2.1 m/s...

Block A of mass (mA) = 9.0 kg with an initial speed (uA) = 2.1 m/s collides with a Block B of mass (mB) = 27 kg which had an in initial speed (uB) = 0.50 m/s, as shown int the figure. The surface is frictionless, and the blocks suddenly collide and couple. After the collision, Find the common speed (Vf) that the blocks travel with.

a) 0.5 m/s

b) 0.9 m/s

c) 0.1 m/s

d) 0.6 m/s

Homework Answers

Answer #1

Given the mass of block A (mA) = 9kg, mass of block B (mB) = 27kg, initial velocity of block A (uA) = 2.1m/s and the initial speed of block B (uB) = 0.50m/s. They collide and couple and move with a common speed Vf.

According to law of conservation of linear momentum, the total momentum before collision (Pi)is equal to the total momentum after collision (Pf). Therefore,

So the final common speed of the two blocks is 0.9m/s.

Option (b) is the correct answer.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A bullet of mass ma= 0.01 kg moving with an initial speed of va= 200 m/s...
A bullet of mass ma= 0.01 kg moving with an initial speed of va= 200 m/s embeds itself in a wooden block with mass mb= 0.99 kg moving in the same direction with an initial speed vb= 2.6 m/s. What is the speed of the bullet-embedded block after the collision? What is the total kinetic energy of the bullet and block system before and after the collision?
A block with mass m1 = 10 kg moving at 5 m/s collides with another block...
A block with mass m1 = 10 kg moving at 5 m/s collides with another block with mass m2 = 20 kg moving the other way at 1 m/s. The two blocks stick together after the collision. (a) What is their common final velocity, vf ? (b) The blocks collide again, this time elastically. Assume that the outgoing blocks move away from the collision along the initial line of approach. What are the final velocities, v1f and v2f ?
Consider the following two blocks A and B with the mass of ma= 7 kg and...
Consider the following two blocks A and B with the mass of ma= 7 kg and mb = 4 kg. They are moving in the same direction along the x-axis on a horizontal frictionless surface with initial velocities vai= 30 m/s and vbi= 20 m/s. The two blocks collide head-on and there is no change in the line of motion of either object. If the collision is elastic, find the final velocity of block A.
A block moving with speed vo = 10 m/s and mass m1 = 6 kg collides...
A block moving with speed vo = 10 m/s and mass m1 = 6 kg collides with a block of mass m2 = 5 kg initially at rest. (Both slide on a frictionless surface at all times.) Now the two blocks collide with a third block initially at rest. What is the final momentum of the system? Question options: A) 30 kg-m/s B) 60 kg-m/s C) 190 kg-m/s D) 250 kg-m/s E) 310 kg-m/s
Block A of mass mA=6kg ,slides down an incline from a height of 10 m from...
Block A of mass mA=6kg ,slides down an incline from a height of 10 m from the ground. Block A then collide with block B, with a mass mB=8kg which is at rest in the ground. The collision is elastic. There is no friction between the blocks and the incline nor between the blocks and the ground. a) Find the velocity of A before it collides with B ( 5 points) b) Find the maximum height that block A climbs...
A 6.0-kg block moving at 9.0 m/s to the right collides head-on with another 12.0-kg block...
A 6.0-kg block moving at 9.0 m/s to the right collides head-on with another 12.0-kg block moving at 3.0 m/s to the left. What are the velocities of the two blocks after the collision if the collision is elastic?
Block 1, of mass m 1 =9.50 kg , moves along a frictionless air track with...
Block 1, of mass m 1 =9.50 kg , moves along a frictionless air track with speed v 1 =27.0 m/s . It collides with block 2 m2 =13.0 kg , which was initially at restThe blocks stick together after the collision. Find the Magnitude p1 of the total inital momentum of the two block system. Find vf, the magnitude of the final velocity of the two block system.
Block 1, of mass m1 = 12.3 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 12.3 kg , moves along a frictionless air track with speed v1 = 13.0 m/s . It collides with block 2, of mass m2 = 39.0 kg , which was initially at rest. The blocks stick together after the collision. Find the magnitude pi of the total initial momentum of the two-block system. Find vf, the magnitude of the final velocity of the two-block system. What is the change ΔK=Kfinal−Kinitial in the two-block system's...
Block 1, of mass m1 = 1.70 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 1.70 kg , moves along a frictionless air track with speed v1 = 29.0 m/s . It collides with block 2, of mass m2 = 59.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) Find the magnitude pi of the total initial momentum of the two-block system. Find vf, the magnitude of the final velocity of the two-block system. What is the change ΔK=Kfinal−Kinitial in the...
Block 1, of mass m1 = 5.30 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 5.30 kg , moves along a frictionless air track with speed v1 = 31.0 m/s . It collides with block 2, of mass m2 = 51.0 kg , which was initially at rest. The blocks stick together after the collision. A.Find the magnitude pi of the total initial momentum of the two-block system. B.Find vf, the magnitude of the final velocity of the two-block system. C. What is the change ΔK=Kfinal−Kinitial in the two-block...