Question

A person of mass 72 kg stands at the center of a rotating merry-go-round platform of...

A person of mass 72 kg stands at the center of a rotating merry-go-round platform of radius 3.3 m and moment of inertia 870 kg⋅m2 . The platform rotates without friction with angular velocity 0.90 rad/s . The person walks radially to the edge of the platform. part a: Calculate the angular velocity when the person reaches the edge. Express your answer using three significant figures and include the appropriate units. part b: Calculate the rotational kinetic energy of the system of platform plus person before and after the person's walk. Express your answers using two significant figures. Enter your answers numerically separated by a comma.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A person of mass 72 kg stands at the center of a rotating merry-go-round platform of...
A person of mass 72 kg stands at the center of a rotating merry-go-round platform of radius 2.7 m and moment of inertia 860 kg?m2 . The platform rotates without friction with angular velocity 0.95 rad/s . The person walks radially to the edge of the platform. Calculate the angular velocity when the person reaches the edge. Calculate the rotational kinetic energy of the system of platform plus person before and after the person's walk
A person of mass 70 kg stands at the center of a rotating merry-go-round platform of...
A person of mass 70 kg stands at the center of a rotating merry-go-round platform of radius 3.2 m and moment of inertia 860 kg⋅m2 . The platform rotates without friction with angular velocity 0.95 rad/s . The person walks radially to the edge of the platform. A. Calculate the angular velocity when the person reaches the edge. B. Calculate the rotational kinetic energy of the system of platform plus person before and after the person's walk.
1. A person of mass 75.0 kg stands at the center of a rotating merry-go-round platform...
1. A person of mass 75.0 kg stands at the center of a rotating merry-go-round platform of radius 3.00 m and moment of inertia 826 kg⋅m2. The platform rotates without friction with angular velocity of 0.955 rad/s. The person walks radially to the edge of the platform. You may ignore the size of the person. (a) Calculate the angular velocity when the person reaches the edge of the merry-go-round. (b) Calculate the rotational kinetic energy of the system of platform...
A 36.5 kg child stands at the center of a 125 kg playground merry-go-round which rotates...
A 36.5 kg child stands at the center of a 125 kg playground merry-go-round which rotates at 3.10 rad/s. If the child moves to the edge of the merry-go-round, what is the new angular velocity of the system? Model the merry-go-round as a solid disk.
A person with mass mp = 72 kg stands on a spinning platform disk with a...
A person with mass mp = 72 kg stands on a spinning platform disk with a radius of R = 1.83 m and mass md = 196 kg. The disk is initially spinning at ω = 2 rad/s. The person then walks 2/3 of the way toward the center of the disk (ending 0.61 m from the center). 3)What is the final angular velocity of the disk? 4)What is the change in the total kinetic energy of the person and...
A 5.0-m radius playground merry-go-round with a moment of inertia of 2000 kg?m2 is rotating freely...
A 5.0-m radius playground merry-go-round with a moment of inertia of 2000 kg?m2 is rotating freely with an angular speed of 3.0 rad/s. Two people, each having a mass of 60 kg are standing right outside the edge of the merry-go-round. One person radially steps on the edge merry-go-round with negligible speed and the angular speed changes to ?1. A few seconds later, the second person radially steps on the merry-go-round with negligible speed but at distance of 4.0 m...
A 5.0-m radius playground merry-go-round with a moment of inertia of 2000 kg?m2 is rotating freely...
A 5.0-m radius playground merry-go-round with a moment of inertia of 2000 kg?m2 is rotating freely with an angular speed of 3.0 rad/s. Two people, each having a mass of 60 kg are standing right outside the edge of the merry-go-round. One person radially steps on the edge merry-go-round with negligible speed and the angular speed changes to ?1. A few seconds later, the second person radially steps on the merry-go-round with negligible speed but at distance of 4.0 m...
A playground merry-go-round has a mass of 120 kg and a radius of 1.80 m and...
A playground merry-go-round has a mass of 120 kg and a radius of 1.80 m and it is rotating with an angular velocity of 0.400 rev/s. What is its angular velocity (in rev/s) after a 26.0 kg child gets onto it by grabbing its outer edge? The child is initially at rest. Answer to 3 significant figures.
In the figure here, a 31 kg child stands on the edge of a stationary merry-go-round...
In the figure here, a 31 kg child stands on the edge of a stationary merry-go-round of radius 2.4 m. The rotational inertia of the merry-go-round about its rotation axis is 120 kg·m2. The child catches a ball of mass 1.4 kg thrown by a friend. Just before the ball is caught, it has a horizontal velocity of magnitude 9 m/s, at angle φ = 49 ˚ with a line tangent to the outer edge of the merry-go-round, as shown....
A playground merry-go-round with a moment of inertia of 300 kg m2 is rotating with no...
A playground merry-go-round with a moment of inertia of 300 kg m2 is rotating with no friction at an angular velocity of 2.3 rad/s. Sharon, whose mass is 70 kg, runs and jumps on the merry-go-round in such a way that after she jumps on it the merry-go round stops. How fast, in m/s was she running if the merry-go-round had a radius of 2.5 m? Enter only the numerical value of your answer to 2 significant figures. Do not...