Question

A person of mass 70 kg stands at the center of a rotating merry-go-round platform of...

A person of mass 70 kg stands at the center of a rotating merry-go-round platform of radius 3.2 m and moment of inertia 860 kg⋅m2 . The platform rotates without friction with angular velocity 0.95 rad/s . The person walks radially to the edge of the platform. A. Calculate the angular velocity when the person reaches the edge. B. Calculate the rotational kinetic energy of the system of platform plus person before and after the person's walk.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A person of mass 72 kg stands at the center of a rotating merry-go-round platform of...
A person of mass 72 kg stands at the center of a rotating merry-go-round platform of radius 2.7 m and moment of inertia 860 kg?m2 . The platform rotates without friction with angular velocity 0.95 rad/s . The person walks radially to the edge of the platform. Calculate the angular velocity when the person reaches the edge. Calculate the rotational kinetic energy of the system of platform plus person before and after the person's walk
1. A person of mass 75.0 kg stands at the center of a rotating merry-go-round platform...
1. A person of mass 75.0 kg stands at the center of a rotating merry-go-round platform of radius 3.00 m and moment of inertia 826 kg⋅m2. The platform rotates without friction with angular velocity of 0.955 rad/s. The person walks radially to the edge of the platform. You may ignore the size of the person. (a) Calculate the angular velocity when the person reaches the edge of the merry-go-round. (b) Calculate the rotational kinetic energy of the system of platform...
A person of mass 72 kg stands at the center of a rotating merry-go-round platform of...
A person of mass 72 kg stands at the center of a rotating merry-go-round platform of radius 3.3 m and moment of inertia 870 kg⋅m2 . The platform rotates without friction with angular velocity 0.90 rad/s . The person walks radially to the edge of the platform. part a: Calculate the angular velocity when the person reaches the edge. Express your answer using three significant figures and include the appropriate units. part b: Calculate the rotational kinetic energy of the...
A 5.0-m radius playground merry-go-round with a moment of inertia of 2000 kg?m2 is rotating freely...
A 5.0-m radius playground merry-go-round with a moment of inertia of 2000 kg?m2 is rotating freely with an angular speed of 3.0 rad/s. Two people, each having a mass of 60 kg are standing right outside the edge of the merry-go-round. One person radially steps on the edge merry-go-round with negligible speed and the angular speed changes to ?1. A few seconds later, the second person radially steps on the merry-go-round with negligible speed but at distance of 4.0 m...
A 5.0-m radius playground merry-go-round with a moment of inertia of 2000 kg?m2 is rotating freely...
A 5.0-m radius playground merry-go-round with a moment of inertia of 2000 kg?m2 is rotating freely with an angular speed of 3.0 rad/s. Two people, each having a mass of 60 kg are standing right outside the edge of the merry-go-round. One person radially steps on the edge merry-go-round with negligible speed and the angular speed changes to ?1. A few seconds later, the second person radially steps on the merry-go-round with negligible speed but at distance of 4.0 m...
A person with mass mp = 70 kg stands on a spinning platform disk with a...
A person with mass mp = 70 kg stands on a spinning platform disk with a radius of R = 2.04 m and mass md = 186 kg. The disk is initially spinning at ω = 2 rad/s. The person then walks 2/3 of the way toward the center of the disk (ending 0.68 m from the center). What is the total moment of inertia of the system about the center of the disk when the person stands on the...
A 4.2 m diameter merry go round is rotating freely with an angular velocity of 1.0...
A 4.2 m diameter merry go round is rotating freely with an angular velocity of 1.0 rad/s. If its total moment of inertia is 1760 kg*m2, find the angular velocity of the merry go round when four people of 60 kg jump onto the edge of the merry go round. Treat the persons as point particles.
A person with mass mp = 77 kg stands on a spinning platform disk with a...
A person with mass mp = 77 kg stands on a spinning platform disk with a radius of R = 2.22 m and mass md = 195 kg. The disk is initially spinning at ω = 1.9 rad/s. The person then walks 2/3 of the way toward the center of the disk (ending 0.74 m from the center). 1) What is the total moment of inertia of the system about the center of the disk when the person stands on...
A 36.5 kg child stands at the center of a 125 kg playground merry-go-round which rotates...
A 36.5 kg child stands at the center of a 125 kg playground merry-go-round which rotates at 3.10 rad/s. If the child moves to the edge of the merry-go-round, what is the new angular velocity of the system? Model the merry-go-round as a solid disk.
A playground merry-go-round with a moment of inertia of 300 kg m2 is rotating with no...
A playground merry-go-round with a moment of inertia of 300 kg m2 is rotating with no friction at an angular velocity of 2.3 rad/s. Sharon, whose mass is 70 kg, runs and jumps on the merry-go-round in such a way that after she jumps on it the merry-go round stops. How fast, in m/s was she running if the merry-go-round had a radius of 2.5 m? Enter only the numerical value of your answer to 2 significant figures. Do not...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT