Question

A 2.20 kgkg box is moving to the right with speed 8.50 m/sm/s on a horizontal,...

A 2.20 kgkg box is moving to the right with speed 8.50 m/sm/s on a horizontal, frictionless surface. At ttt = 0 a horizontal force is applied to the box. The force is directed to the left and has magnitude F(t)=(F(t)=( 6.00 N/s2N/s2 )t2

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2.80 kg box is moving to the right with speed 8.50 m/s on a horizontal,...
A 2.80 kg box is moving to the right with speed 8.50 m/s on a horizontal, frictionless surface. At t= 0 a horizontal force is applied to the box. The force is directed to the left and has magnitudeF(t)=( 6.00 N/s2 )t^2 a. What distance does the box move from its position at t=0 before its speed is reduced to zero? b. If the force continues to be applied, what is the velocity of the box at 3.00 s ?
A 2.80 kg box is moving to the right with speed 8.00 m/s on a horizontal,...
A 2.80 kg box is moving to the right with speed 8.00 m/s on a horizontal, frictionless surface. At t = 0 a horizontal force is applied to the box. The force is directed to the left and has magnitude F(t)=( 6.00 N/s2 )t^2 What distance does the box move from its position at t=0 before its speed is reduced to zero?
A 0.140 kgkg glider is moving to the right on a frictionless, horizontal air track with...
A 0.140 kgkg glider is moving to the right on a frictionless, horizontal air track with a speed of 0.900 m/sm/s . It has a head-on collision with a 0.301 kgkg glider that is moving to the left with a speed of 2.20 m/sm/s . Suppose the collision is elastic. a)Find the magnitude of the final velocity of the 0.140 kgkg glider. b)Find the direction of the final velocity of the 0.140 kgkg glider. to the right to the left...
A 0.154 kgkg glider is moving to the right on a frictionless, horizontal air track with...
A 0.154 kgkg glider is moving to the right on a frictionless, horizontal air track with a speed of 0.870 m/sm/s . It has a head-on collision with a 0.295 kgkg glider that is moving to the left with a speed of 2.22 m/sm/s . Suppose the collision is elastic. Find the magnitude of the final velocity of the 0.154 kgkg glider. Find the magnitude of the final velocity of the 0.295 kgkg glider.
1. On a frictionless horizontal air table, puck A (with mass 0.252 kgkg ) is moving...
1. On a frictionless horizontal air table, puck A (with mass 0.252 kgkg ) is moving toward puck B (with mass 0.375 kgkg ), which is initially at rest. After the collision, puck A has velocity 0.122 m/sm/s to the left, and puck B has velocity 0.651 m/sm/s to the right. Calculate ΔKΔKDeltaK, the change in the total kinetic energy of the system that occurs during the collision. 2. A 2.5 kgkg block of wood sits on a frictionless table....
A 0.060-kgkg tennis ball, moving with a speed of 5.24 m/sm/s , has a head-on collision...
A 0.060-kgkg tennis ball, moving with a speed of 5.24 m/sm/s , has a head-on collision with a 0.085-kgkg ball initially moving in the same direction at a speed of 3.66 m/sm/s . what is the collision is perfectly elastic.
A dog (19 kgkg ) is running with a speed of 3.9 m/sm/s . What is...
A dog (19 kgkg ) is running with a speed of 3.9 m/sm/s . What is the force required to stop the dog? Assume that the force is horizontal, constant, and is applied over a distance of 0.45 mm . A dog (19  ) is running with a speed of 3.9  . What is the force required to stop the dog? Assume that the force is horizontal, constant, and is applied over a distance of 0.45  . 420 NN 150 NN 320 NN...
A small, 200 gg cart is moving at 1.90 m/sm/s on a frictionless track when it...
A small, 200 gg cart is moving at 1.90 m/sm/s on a frictionless track when it collides with a larger, 5.00 kgkg cart at rest. After the collision, the small cart recoils at 0.810 m/sm/s . What is the speed of the large cart after the collision? Express your answer with the appropriate units. A 2.2 kgkg block slides along a frictionless surface at 1.4 m/sm/s . A second block, sliding at a faster 4.4 m/sm/s , collides with the...
A 0.454-kgkg block is attached to a horizontal spring that is at its equilibrium length, and...
A 0.454-kgkg block is attached to a horizontal spring that is at its equilibrium length, and whose force constant is 22.0 N/mN/m. The block rests on a frictionless surface. A 5.80×10−2-kgkg wad of putty is thrown horizontally at the block, hitting it with a speed of 8.94 m/sm/s and sticking. Part A How far does the putty-block system compress the spring?
A box A of mass 4.0 kg is moving toward the right at a speed of...
A box A of mass 4.0 kg is moving toward the right at a speed of 30.0 m/s on a frictionless horizontal surface, and another box B of mass 5.0 kg is sitting stationary to the left of box A. Box A collides with Box B. (a) Suppose they bounce off each other. The collision is elastic. What are the final speeds of the two boxes, and which direction is each going in now? (b) Suppose they stick together because...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT