Question

A 0.140 kgkg glider is moving to the right on a frictionless, horizontal air track with...

A 0.140 kgkg glider is moving to the right on a frictionless, horizontal air track with a speed of 0.900 m/sm/s . It has a head-on collision with a 0.301 kgkg glider that is moving to the left with a speed of 2.20 m/sm/s . Suppose the collision is elastic.

a)Find the magnitude of the final velocity of the 0.140 kgkg glider.

b)Find the direction of the final velocity of the 0.140 kgkg glider.

to the right

to the left

c)Find the magnitude of the final velocity of the 0.301 kgkg glider.

d)Find the direction of the final velocity of the 0.301 kgkg glider.

to the right

to the left

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.154 kgkg glider is moving to the right on a frictionless, horizontal air track with...
A 0.154 kgkg glider is moving to the right on a frictionless, horizontal air track with a speed of 0.870 m/sm/s . It has a head-on collision with a 0.295 kgkg glider that is moving to the left with a speed of 2.22 m/sm/s . Suppose the collision is elastic. Find the magnitude of the final velocity of the 0.154 kgkg glider. Find the magnitude of the final velocity of the 0.295 kgkg glider.
A 0.155-kg glider is moving to the right on a frictionless, horizontal air track with a...
A 0.155-kg glider is moving to the right on a frictionless, horizontal air track with a speed of 0.81 m/s. It has a head-on collision with a 0.310-kg glider that is moving to the left with a speed of 2.26m/s. Find the final velocity (magnitude and direction) of each glider if the collision is elastic. a. 0.155-kg glider magnitude --- m/s b. 0.310-kg glider magnitude---m/s
A 0.143kg glider is moving to the right on a frictionless, horizontal air track with a...
A 0.143kg glider is moving to the right on a frictionless, horizontal air track with a speed of 0.850m/s . It has a head-on collision with a 0.290kgglider that is moving to the left with a speed of 2.18m/s . Suppose the collision is elastic. Part A Find the magnitude of the final velocity of the 0.143kg glider. Part B Find the direction of the final velocity of the 0.143kg glider. Part C Find the magnitude of the final velocity...
A 0.154 kg glider is moving to the right on a frictionless, horizontal air track with...
A 0.154 kg glider is moving to the right on a frictionless, horizontal air track with a speed of 0.730 m/s . It has a head-on collision with a 0.304 kg glider that is moving to the left with a speed of 2.14 m/s. Suppose the collision is elastic. Find the magnitude of the final velocity of the 0.154 kg glider. Find the magnitude of the final velocity of the 0.304 kg glider.
A 0.141kg glider is moving to the right on a frictionless, horizontal air track with a...
A 0.141kg glider is moving to the right on a frictionless, horizontal air track with a speed of 0.900m/s . It has a head-on collision with a 0.302kg glider that is moving to the left with a speed of 2.25m/s . Suppose the collision is elastic Find the magnitude of the final velocity of the 0.302kg glider
A glider of mass 0.155 kg is moving to the right on a frictionless, horizontal air...
A glider of mass 0.155 kg is moving to the right on a frictionless, horizontal air track with a speed of 0.760 m/s . It has a head-on collision with a glider 0.294 kg that is moving to the left with a speed of 2.29 m/s . Suppose the collision is elastic. Find the magnitude of the final velocity of the 0.155 kg glider. Find the magnitude of the final velocity of the 0.294 kg glider.
A 0.50-kg glider is moving to the right with a speed of 0.8 m/s on a...
A 0.50-kg glider is moving to the right with a speed of 0.8 m/s on a frictionless horizontal air track. The glider has a head-on collision with a 0.70-kg glider that is moving to the left with a speed of 1.5 m/s. if the collision is completely inelastic (they stick together): 1. what is the final speed of gliders? 2. In what direction the glider will go? (left or right) 3.How much energy is lost in the system during the...
1. On a frictionless horizontal air table, puck A (with mass 0.252 kgkg ) is moving...
1. On a frictionless horizontal air table, puck A (with mass 0.252 kgkg ) is moving toward puck B (with mass 0.375 kgkg ), which is initially at rest. After the collision, puck A has velocity 0.122 m/sm/s to the left, and puck B has velocity 0.651 m/sm/s to the right. Calculate ΔKΔKDeltaK, the change in the total kinetic energy of the system that occurs during the collision. 2. A 2.5 kgkg block of wood sits on a frictionless table....
On a frictionless air track, a 0.165 kg glider moving at 1.50 m/s to the right...
On a frictionless air track, a 0.165 kg glider moving at 1.50 m/s to the right collides with and sticks to a stationary 0.265 kg glider. What is the net momentum of this two-glider system before the collision? Use coordinates where +x is in the direction of the initial motion of the lighter glider (Express answer in kg•m/s) What must be the net momentum of this system after the collision (Express answer in kg•m/s) Use your answers in Parts A...
On a frictionless air track, a 0.150 kg glider moving at 1.20 m/s to the right...
On a frictionless air track, a 0.150 kg glider moving at 1.20 m/s to the right collides with and sticks to a stationary 0.250 kg glider. A) What is the momentum of this two glider system before the collision? B) What must be the net momentum of this system after the collision? Why? C) Use answers from a and b to find the speed of the gliders after the collision. D) Is kinetic energy conserved during the collision?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT