Question

A small, 200 gg cart is moving at 1.90 m/sm/s on a frictionless track when it...

A small, 200 gg cart is moving at 1.90 m/sm/s on a frictionless track when it collides with a larger, 5.00 kgkg cart at rest. After the collision, the small cart recoils at 0.810 m/sm/s .

What is the speed of the large cart after the collision?

Express your answer with the appropriate units.

A 2.2 kgkg block slides along a frictionless surface at 1.4 m/sm/s . A second block, sliding at a faster 4.4 m/sm/s , collides with the first from behind and sticks to it. The final velocity of the combined blocks is 2.4 m/sm/s .

What was the mass of the second block?

Express your answer with the appropriate units.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A small, 250 gg cart is moving at 1.80 m/sm/s on a frictionless track when it...
A small, 250 gg cart is moving at 1.80 m/sm/s on a frictionless track when it collides with a larger, 3.00 kgkg cart at rest. After the collision, the small cart recoils at 0.820 m/sm/s . v = _____
A small, 300 gg cart is moving at 1.40 m/sm/s on a frictionless track when it...
A small, 300 gg cart is moving at 1.40 m/sm/s on a frictionless track when it collides with a larger, 4.00 kg cart at rest. After the collision, the small cart recoils at 0.810 m/s. What is the speed of the large cart after the collision?
A small, 100 g cart is moving at 1.90 m/s on an air track when it...
A small, 100 g cart is moving at 1.90 m/s on an air track when it collides with a larger, 2.00 kg cart at rest. After the collision, the small cart recoils at 0.820 m/s . What is the speed of the large cart after the collision?
A 120 gg ball moving to the right at 4.2 m/sm/s catches up and collides with...
A 120 gg ball moving to the right at 4.2 m/sm/s catches up and collides with a 450 gg ball that is moving to the right at 1.2 m/sm/s Part A: If the collision is perfectly elastic, what is the speed of the 120 gg ball after the collision? Express your answer to two significant figures and include the appropriate units. Part B : If the collision is perfectly elastic, what is the direction of motion of the 120 gg...
A)A 2.9 kg block of wood sits on a table. A 0.0035 kg bullet, fired horizontally...
A)A 2.9 kg block of wood sits on a table. A 0.0035 kg bullet, fired horizontally at a speed of 440 m/s, goes completely through the block, emerging at a speed of 140 m/s.What is the speed of the block immediately after the bullet exits? Answer in m/s B)A small, 0.43 kg cart is moving at 1.4 m/s on an air track when it collides with a larger, 5 kg cart at rest. After the collision, the small cart recoils...
1. On a frictionless horizontal air table, puck A (with mass 0.252 kgkg ) is moving...
1. On a frictionless horizontal air table, puck A (with mass 0.252 kgkg ) is moving toward puck B (with mass 0.375 kgkg ), which is initially at rest. After the collision, puck A has velocity 0.122 m/sm/s to the left, and puck B has velocity 0.651 m/sm/s to the right. Calculate ΔKΔKDeltaK, the change in the total kinetic energy of the system that occurs during the collision. 2. A 2.5 kgkg block of wood sits on a frictionless table....
A 144-gg baseball moving 29 m/sm/s strikes a stationary 5.25-kgkg brick resting on small rollers so...
A 144-gg baseball moving 29 m/sm/s strikes a stationary 5.25-kgkg brick resting on small rollers so it moves without significant friction. After hitting the brick, the baseball bounces straight back, and the brick moves forward at 1.24 m/sm/s .
A 50.0 gg marble moving at 2.00 m/sm/s strikes a 26.0 gg marble at rest. Note...
A 50.0 gg marble moving at 2.00 m/sm/s strikes a 26.0 gg marble at rest. Note that the collision is elastic and that it is a "head-on" collision so all motion is along a line. What is the speed of 50.0 gg marble immediately after the collision? What is the speed of 26.0 gg marble immediately after the collision?
An air-track cart with mass m1=0.34kg and initial speed v0=0.80m/s collides with and sticks to a...
An air-track cart with mass m1=0.34kg and initial speed v0=0.80m/s collides with and sticks to a second cart that is at rest initially. Part A If the mass of the second cart is m2=0.54kg, how much kinetic energy is lost as a result of the collision? Express your answer to two significant figures and include appropriate units.
A cart with mass 271 g, moving on a frictionless linear air track at an initial...
A cart with mass 271 g, moving on a frictionless linear air track at an initial speed of 1.08 m/s hits an initially stationary cart of unknown mass. After the collision, the first cart continues in its original direction at 0.92 m/s. The collision is elastic. (a) What is the mass of the second cart? (b) What is the speed of the second cart? A block of mass 0.29 kg is placed on top of a light, vertical spring of...