Question

Two astronauts each having a mass of 75.0 kg, are connected by a 9.5 m rope...

Two astronauts each having a mass of 75.0 kg, are connected by a 9.5 m rope of negligible mass. They are isolated in space, orbiting their center of mass at speeds of 4.50 m/s. (a) Treating the astronauts as particles, calculate the magnitude of the angular momentum. kg·m2/s (b) Calculate the rotational energy of the system. J (c) By pulling on the rope, one of the astronauts shortens the distance between them to 5.00 m. What is the new angular momentum of the system? kg·m2/s (d) What are the astronauts' new speeds? m/s (e) What is the new rotational energy of the system? J (f) How much work does the astronaut do in shortening the rope? kJ  

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two astronauts (figure), each having a mass of 74.0 kg, are connected by a d =...
Two astronauts (figure), each having a mass of 74.0 kg, are connected by a d = 11.0-m rope of negligible mass. They are isolated in space, orbiting their center of mass at speeds of 5.30 m/s. Two astronauts are connected by a taut horizontal rope of length d. They rotate counterclockwise about the center of mass CM at the midpoint of the rope. (a) Treating the astronauts as particles, calculate the magnitude of the angular momentum of the two-astronaut system....
Two astronauts, each with a mass of 57 kg, are connected by a 6.4 m massless...
Two astronauts, each with a mass of 57 kg, are connected by a 6.4 m massless rope. Initially they are rotating around their center of mass with an angular velocity of 1.9 rad/s. One of the astronauts then pulls on the rope shortening the distance between the two astronauts to 2.6 m. What is angular speed (in rad/s) of the system at this new separation distance between the astronauts? You may model each astronaut as a point particle.
A solid disk of mass m1 = 9.5 kg and radius R = 0.19 m is...
A solid disk of mass m1 = 9.5 kg and radius R = 0.19 m is rotating with a constant angular velocity of ω = 30 rad/s. A thin rectangular rod with mass m2 = 3.3 kg and length L = 2R = 0.38 m begins at rest above the disk and is dropped on the disk where it begins to spin with the disk. 1) What is the initial angular momentum of the rod and disk system? 2) What...
in space, two astronauts, each with a mass of 60 kg, are attached to each other...
in space, two astronauts, each with a mass of 60 kg, are attached to each other at the ends of a 30 m long rope. they are rotating abiut the CENTER of the rope, each traveling in the same circular path at a speed of V =3.50 m/s draw and label a figure A) find initial moment of inertia B) find the initial angular velocity the astronauts pull themselves along the rope until they are 2.20 m apart. C) now...
A solid disk of mass m1 = 9.5 kg and radius R = 0.19 m is...
A solid disk of mass m1 = 9.5 kg and radius R = 0.19 m is rotating with a constant angular velocity of ω = 30 rad/s. A thin rectangular rod with mass m2 = 3.3 kg and length L = 2R = 0.38 m begins at rest above the disk and is dropped on the disk where it begins to spin with the disk. 5) What is the final rotational energy of the rod and disk system?
Two children (m = 27.0 kg each) stand opposite each other on the edge of a...
Two children (m = 27.0 kg each) stand opposite each other on the edge of a merry-go-round. The merry-go-round, which has a mass of 1.66 ? 102 kg and a radius of 1.6 m, is spinning at a constant rate of 0.38 rev/s. Treat the two children and the merry-go-round as a system. (a) Calculate the angular momentum of the system, treating each child as a particle. (Give the magnitude.) kg · m2/s (b) Calculate the total kinetic energy of...
A hanging weight, with a mass of m1 = 0.355 kg, is attached by a rope...
A hanging weight, with a mass of m1 = 0.355 kg, is attached by a rope to a block with mass m2 = 0.845 kg as shown in the figure below. The rope goes over a pulley with a mass of M = 0.350 kg. The pulley can be modeled as a hollow cylinder with an inner radius of R1 = 0.0200 m, and an outer radius of R2 = 0.0300 m; the mass of the spokes is negligible. As...
In the figure, two particles, each with mass m = 0.86 kg, are fastened to each...
In the figure, two particles, each with mass m = 0.86 kg, are fastened to each other, and to a rotation axis at O, by two thin rods, each with length d = 5.4 cm and mass M = 1.2 kg. The combination rotates around the rotation axis with angular speed ω = 0.33 rad/s. Measured about O, what is the combination's (a) rotational inertia and (b) kinetic energy?
At time t = 4 sec, a particle of mass M = 4.5 kg is at...
At time t = 4 sec, a particle of mass M = 4.5 kg is at the position (x,y,z) = (4,4,6) m and has velocity (2,1,-2) m/s. 1)What is the x component of the particle's angular momentum about the origin? 2)What is the y component of the particle's angular momentum about the origin? 3)What is the z component of the particle's angular momentum about the origin? 4)Now an identical particle is placed at (x,y,z) = (-4,-4,-6) m, with velocity (-2,-1,2)...
At time t = 11.5 sec, a particle of mass M = 5 kg is at...
At time t = 11.5 sec, a particle of mass M = 5 kg is at the position (x,y,z) = (4,4,6) m and has velocity (2,1,-2) m/s. 1) What is the x component of the particle's angular momentum about the origin? 2) What is the y component of the particle's angular momentum about the origin? 3) What is the z component of the particle's angular momentum about the origin? 4) Now an identical particle is placed at (x,y,z) = (-4,-4,-6)...