Question

A 4.3-g object moving to the right at 34 cm/s makes an elastic head-on collision with...

A 4.3-g object moving to the right at 34 cm/s makes an elastic head-on collision with a 8.6-g object that is initially at rest.

What is the velocity of the 4.3-g mass after the collision?

What fraction of the initial kinetic energy was transferred to the 8.6-g block?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 10.0 g object moving to the right at 17.0 cm/s makes an elastic head-on collision...
A 10.0 g object moving to the right at 17.0 cm/s makes an elastic head-on collision with a 15.0 g object moving in the opposite direction at 35.0 cm/s. Find the velocity of each object after the collision. 10g object 15g object
-A 11.0g object moving to the right at 18.6 cm/s makes an elastic head-on collision with...
-A 11.0g object moving to the right at 18.6 cm/s makes an elastic head-on collision with a 17.9g object moving in the opposite direction at 29.2 cm/s. What is the velocity of the 11.0g object after the collision (assume positive to the right)? - What is the velocity of the 17.9g object after the collision?
A 1.0kg object initially moving with a velocity of 3.0m/s to the right makes an elastic...
A 1.0kg object initially moving with a velocity of 3.0m/s to the right makes an elastic head-on collision with a 1.5kg object initially moving to the left at 2.0m/s. a) What are the final velocities of the two objects after the collision? b) Using the given initial data for the two-object system as well as your results, show that the total kinetic energy is conserved for this elastic collision.
A neutron in a nuclear reactor makes an elastic head-on collision with the nucleus of a...
A neutron in a nuclear reactor makes an elastic head-on collision with the nucleus of a lead atom initially at rest. (a) What fraction of the neutron's kinetic energy is transferred to the lead nucleus? (The mass of the lead nucleus is about 207 times the mass of the neutron.) (b) If the initial kinetic energy of the neutron is 1.80 10-13 J, find its final kinetic energy and the kinetic energy of the lead nucleus after the collision. neutron...
Croquet ball A moving at 8.9 m/s makes a head on collision with ball B of...
Croquet ball A moving at 8.9 m/s makes a head on collision with ball B of equal mass and initially at rest. Immediately after the collision ball B moves forward at 5.0 m/s . What fraction of the initial kinetic energy is lost in the collision?
Assume: Moving to the right is positive. A(n) 10 g object moving to the right at...
Assume: Moving to the right is positive. A(n) 10 g object moving to the right at 29 cm/s makes an elastic head-on collision with a 14 g object moving in the opposite direction at 42 cm/s. 10 g 29 cm/s 14 g 42 cm/s Find the velocity of the first object immediately after the collision. Answer in units of cm/s
A 2.0 g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a...
A 2.0 g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a resting 1.0 g object. (a) Find the speed of each after the collision. 2.0 g particle m/s 1.0 g particle m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle m/s 1.0 g particle m/s (c) Find the final kinetic energy of the incident 2.0 g particle in the situations...
A 2.0 g particle moving at 5.6 m/s makes a perfectly elastic head-on collision with a...
A 2.0 g particle moving at 5.6 m/s makes a perfectly elastic head-on collision with a resting 1.0 g object. (a) Find the speed of each after the collision. 2.0 g particle m/s 1.0 g particle m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle m/s 1.0 g particle m/s (c) Find the final kinetic energy of the incident 2.0 g particle in the situations...
A 2.0-g particle moving at 7.0 m/s makes a perfectly elastic head-on collision with a resting...
A 2.0-g particle moving at 7.0 m/s makes a perfectly elastic head-on collision with a resting 1.0-g object. (a) Find the speed of each particle after the collision. 2.0 g particle     m/s 1.0 g particle     m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle     m/s 10.0 g particle     m/s (c) Find the final kinetic energy of the incident 2.0-g particle in the situations described in...
A 2.0-g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a resting...
A 2.0-g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a resting 1.0-g object. (a) Find the speed of each particle after the collision. 2.0 g particle     m/s 1.0 g particle     m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle     m/s 10.0 g particle     m/s (c) Find the final kinetic energy of the incident 2.0-g particle in the situations described in...