Question

A 2.0-g particle moving at 7.0 m/s makes a perfectly elastic head-on collision with a resting...

A 2.0-g particle moving at 7.0 m/s makes a perfectly elastic head-on collision with a resting 1.0-g object.

(a) Find the speed of each particle after the collision.

2.0 g particle     m/s
1.0 g particle     m/s


(b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g.

2.0 g particle     m/s
10.0 g particle     m/s


(c) Find the final kinetic energy of the incident 2.0-g particle in the situations described in parts (a) and (b).

KE in part (a)     J
KE in part (b)     J


In which case does the incident particle lose more kinetic energy?

case (a)case (b)    

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2.0-g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a resting...
A 2.0-g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a resting 1.0-g object. (a) Find the speed of each particle after the collision. 2.0 g particle     m/s 1.0 g particle     m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle     m/s 10.0 g particle     m/s (c) Find the final kinetic energy of the incident 2.0-g particle in the situations described in...
A 2.0 g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a...
A 2.0 g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a resting 1.0 g object. (a) Find the speed of each after the collision. 2.0 g particle m/s 1.0 g particle m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle m/s 1.0 g particle m/s (c) Find the final kinetic energy of the incident 2.0 g particle in the situations...
A 2.0 g particle moving at 5.6 m/s makes a perfectly elastic head-on collision with a...
A 2.0 g particle moving at 5.6 m/s makes a perfectly elastic head-on collision with a resting 1.0 g object. (a) Find the speed of each after the collision. 2.0 g particle m/s 1.0 g particle m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle m/s 1.0 g particle m/s (c) Find the final kinetic energy of the incident 2.0 g particle in the situations...
I ONLY NEED PART C ANSWERED ALL OTHERS ARE CORRECT PLEASE WRITE ANSWER AS THE CORRECT...
I ONLY NEED PART C ANSWERED ALL OTHERS ARE CORRECT PLEASE WRITE ANSWER AS THE CORRECT DECIMAL NO SCIENTIFIC NOTATION A 2.00-g particle moving at 5.40 m/s makes a perfectly elastic head-on collision with a resting 1.00-g object. (Assume the 2.00-g particle is moving in the positive direction before the collision. Indicate the direction with the sign of your answer.) (a) Find the velocity of each particle after the collision. 2.00-g particle=1.8 m/s 1.00-g particle=7.2 m/s (b) Find the velocity...
In a perfectly elastic collision, a 400-g ball moving toward the east at 3.7 m/s suddenly...
In a perfectly elastic collision, a 400-g ball moving toward the east at 3.7 m/s suddenly collides head-on with a 200 g ball sitting at rest. (a) Determine the velocity of the first ball just after the collision. (b) Determine the velocity of the second ball just after the collision. (c) Is kinetic energy conserved in this collision? How do you know? please show work on paper
A 10.0 g object moving to the right at 17.0 cm/s makes an elastic head-on collision...
A 10.0 g object moving to the right at 17.0 cm/s makes an elastic head-on collision with a 15.0 g object moving in the opposite direction at 35.0 cm/s. Find the velocity of each object after the collision. 10g object 15g object
A heavy 3.8 kg block moves at 4.2 m/s and then makes a head-on elastic collision...
A heavy 3.8 kg block moves at 4.2 m/s and then makes a head-on elastic collision with a lighter, stationary block of mass 1.7 kg. Use conservation of momentum and the fact that the relative speed of recession equals the relative speed of approach to find velocity of each block after the collision. Check your answer by calculating the initial and final kinetic energies of each block. Show work and explain
A 1-kg particle moving with 14 m/sm/s   in the positive x-axis direction makes a head-on elastic...
A 1-kg particle moving with 14 m/sm/s   in the positive x-axis direction makes a head-on elastic collision with a stationary 3-kg particle. After collision, the two particles rebound along the x-axis. What is the final velocity of the 1-kg particle?
A 200-g particle moving at 5.0 m/s on a frictionless horizontal surface collides with a 300-g...
A 200-g particle moving at 5.0 m/s on a frictionless horizontal surface collides with a 300-g particle initially at rest. After the collision the 300-g object has a velocity of 2.0 m/s at 45o below the direction of motion of the incoming particle. What is the velocity of the incoming particle after the collision? What percentage of the initial kinetic energy is lost in the collision?
Particle 1 of mass 194 g and speed 4.94 m/s undergoes a one-dimensional collision with stationary...
Particle 1 of mass 194 g and speed 4.94 m/s undergoes a one-dimensional collision with stationary particle 2 of mass 325 g. What is the magnitude of the impulse on particle 1 if the collision is (a) elastic and (b) completely inelastic?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT